Advertisement

Integrated Management of Rosellinia nEcatrix Root Rot on Fruit Tree Crops

  • Leonardo Schena
  • Franco Nigro
  • Antonio Ippolito
Part of the Integrated Management of Plant Pests and Diseases book series (IMPD, volume 3)

Abstract

Rosellinia necatrix is a soil borne pathogen causing a disease commonly named “white root rot”. The pathogen, widely distributed throughout temperate and tropical climates, recently showed an increasing trend of attacks on a number of different host species. Economic losses are particularly serious in the nurseries and on orchard trees, although field crops and weeds can also be severely damaged. The pathogen is mainly disseminated by propagating materials and can survive in soil for many years. Control strategies, which include cultural practices, soil disinfestations, chemical treatments, soil solarization and biological control are expensive and not always resolutive. Therefore, white root rot control largely depends on attempts to exclude the pathogen through the use of R. necatrix-free propagating material and planting in non-infested soils. In this context a fundamental role is played by specific rules, promoting the commercialisation of healthy propagating materials and the availability of new molecular detection methods to exclude presence of the pathogen in soil and host tissues.

Keywords

Biocontrol Agent Sweet Cherry Apple Orchard Methyl Bromide Soilborne Pathogen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe, T., & Kono, M. (1953). Studies on the white root rot of tea bush I. Scientific Reports of the Saikyo University of Agriculture, 5, 93–105.Google Scholar
  2. Abe, T., & Kono, M. (1957). Studies on the white root rot of tea bush IV. On the toxicities of cultural filtrate of the fungus. Scientific Reports of the Saikyo University of Agriculture, 8, 74–80.Google Scholar
  3. Aimi, T., Kano, S., Yotsutani, Y., & Morinaga, T. (2002). Telomeric fingerprinting of the white root rot fungus, Rosellinia necatrix: a useful tool for strain identification. FEMS Microbiology Letters, 217, 95–101.PubMedCrossRefGoogle Scholar
  4. Amenduni, T., Bazzoni, A., Romanazzi, G., Cariddi, C., Vovlas, N., Trisciuzzi, N., Schena, L., Potere, O., Finetti-Sialer, M., Myrta, A., 2001. Distribuzione dei patogeni delle drupacee in Puglia. In: Atti progetto POM A32 – Norme fitosanitarie e commercializzazione delle produzioni vivaistiche. Locorotondo (Bari, Italy), 143–179.Google Scholar
  5. Anonymous, (1987). Distribution maps of plant diseases. Map N. 306, Rosellinia necatrix Prill. CABI Publishing, CAB international, Wallingford, UK.Google Scholar
  6. Anselmi, N., & Giorcelli, A. (1990a). Factors influencing the incidence of Rosellinia necatrix Prill in poplars. European Journal of Forest Pathology, 20, 175–183.CrossRefGoogle Scholar
  7. Anselmi, N. & Giorcelli, A. (1990b). I marciumi radicali del pioppo da Rosellinia necatrix Prill. Informatore Fitopatologico, 40, 45–52.Google Scholar
  8. Arakawa, M., Nakamura, H., Uetake, Y., & Matsumoto, N. (2002). Presence and distribution of double-stranded RNA elements in the white root rot fungus Rosellinia necatrix. Mycoscience, 43, 21–26.CrossRefGoogle Scholar
  9. Araki, T. (1967). Soil conditions and the violet and white root rot diseases of fruit trees. Bulletin of the Natinal Institute of Agricultural Science, Nishihara, Series C (Plant Pathology and Entomology) 21, 101–110.Google Scholar
  10. Behdad, E. (1976). The influence of several new systemic fungicides on Rosellinia necatrix (Hartig) Berlese. Iranian Journal Plant Pathology, 12, 40–41.Google Scholar
  11. Berlese, A. N., (1892). Rapporti tra Dematophora e Rosellinia. Rivista di Patologia Vegetale, 1, 5–17.Google Scholar
  12. Bhardwaj, L. N., Nag, N., & Sharma, S. K. (2000). Effect of green amendments and VAM fungi on the management of white root rot of apple. Plant Disease Research, 15, 53–59.Google Scholar
  13. Biondi, N., Piccardi, R., Margheri, M. C., Rodolfi, L., Smith, G. D., & Tredici, M. R. (2004). Evaluation of Nostoc Strain ATCC 53789 as a potential source of natural pesticides. Applied and Environmental Microbiology, 70, 3313–3320.PubMedCrossRefGoogle Scholar
  14. Cazorla, F. M., Duckett, S. B., Bergström, E. T., Noreen, S., Odijk, R., Lugtenberg, B. J. J., Thomas-Oates, J. E., & Bloemberg, G. V. (2006). Biocontrol of avocado dematophora root rot by antagonistic Pseudomonas fluorescens PCL1606 correlates with the production of 2-hexyl 5-propyl resorcinol. Molecular Plant-Microbe Interactions, 19, 418–428.PubMedCrossRefGoogle Scholar
  15. Cazorla-López, F., Bloemberg, G. V., & Lugtenberg, B. J. J. (2001). Biocontrol of white root rot on avocado plants using rhizobacterial strains. Biological control of fungal and bacterial plant pathogens. IOBC/WPRS Bulletin, 4, 79–82.Google Scholar
  16. Cellerino, G. P., Anselmi, N., & Giorcelli, A. (1988). Repartition en Italie et conditions favorisant les attaques de Rosellinia necatrix Prill. sur peuplier. Annali della Facoltà di Scienze Agrarie dell’Università di Torino, 15, 165–176.Google Scholar
  17. Cohen, R., & Sztejnberg, A. (1981). Physical and chemical control of Dematophora necatrix. Phytoparasitica, 9, 225–226.Google Scholar
  18. De Notaris, G. (1844). Osservazione su alcuni generi e specie della tribù dei Pirenomiceti sferiacei. Giornale Botanico Italiano, 2, 38–55.Google Scholar
  19. Delatour, C., & Guillaumin, J. J. (1985). Importance des pourridiés dans les régions tempérées. European Journal of Forest Pathology, 15, 258–263.CrossRefGoogle Scholar
  20. Denardi, F., & Bretón, O. (1995). Resistência de porta-enxertos de macieira ao fungo Rosellinia necatrix Prill. no meio oeste catarinense. Revista Agropecuária Catarinense, 8, 25–27.Google Scholar
  21. Duan, C. H., Tsai, W. H., Tu, C. C. (1990). Dissemination of white root rot disease of loquat and its control. Journal of Agricultural Research of China, 39, 47–54.Google Scholar
  22. Edwards, R. L., Maitland, D. J., Scowen, I. J., Teixeira, de Sousa, A. J., & Whalley, A. J. S. (2001). Metabolites of the higher fungi. Part 32. Rosnecatrone, a phytotoxic bicyclo [4.1.0.] hept-3-en-2-one from the fungus Rosellinia necatrix Prill. Journal of the Chemical Society, Perkin Transactions 1, 5, 537–542.CrossRefGoogle Scholar
  23. Farr, D. F., Rossman, A. Y., Palm, M. E., & McCray, E. B. (2006). Fungal Databases, Systematic Botany & Mycology Laboratory, ARS, USDA.http://nt.ars-grin.gov/fungaldatabases/
  24. Freeman, S., Sztejnberg, A., & Chet, I. (1986). Evaluation of Trichoderma as a biocontrol agent for Rosellinia necatrix. Plant and Soil, 94, 163–170.CrossRefGoogle Scholar
  25. Freeman, S., Sztejnberg, A., Shabi, E., & Katan, J. (1990). Long-term effect of soil solarization for the control of Rosellinia necatrix in apple. Crop Protection, 9, 312–316.CrossRefGoogle Scholar
  26. García-Jiménez, J., Busto, J., Vicent, A., & Armengol, J. (2004). Control of Dematophora necatrix on Cyperus esculentus tubers by hot-water treatment. Crop Protection, 23, 619–623.CrossRefGoogle Scholar
  27. González-Sánchez, M. A., Cazorla, F. M., Ramos, C., de Vicente, A., & Pérez-Jiménez, R. M. (2004). Studies of soil and rhizosphera bacteria to improve biocontrol of avocado white root rot caused by Rosellinia necatrix. Management of plant diseases an arthropod pests by BCAs and their integration in agricultural systems. IOBC/WPRS Bulletin 27, 169–172.Google Scholar
  28. Guillaumin, J. J., Mercier, S., & Dubos, B. (1982). Les pourridiés à Armillariella et Rosellinia en France sur vigne, arbres fruitiers et cultures florales I. Etiologie et symptomatologie. Agronomie, 2, 71–80.CrossRefGoogle Scholar
  29. Guillaumin, J. J. (1986). Le pourridié. Phytoma, 19, 21–23.Google Scholar
  30. Gullino, M. L., Camponogara, A., Gasparrini, G., Rizzo, V., Clini, C., & Garibaldi, A. (2003). Replacing methyl bromide for soil disinfestation. The Italian experience and implications on other countries. Plant Disease, 87, 1012–1021.CrossRefGoogle Scholar
  31. Gupta, V. K. (1977). Possible use of Carbendazim in the control of Dematophora root rot of apple. Indian Phytopathology, 30, 527–531.Google Scholar
  32. Hansen, H. N., Thomas, H. E., & Thomas, H. E. (1937). The connection between Dematophora necatrix and Rosellinia necatrix. Hilgardia, 10, 561–565.Google Scholar
  33. Hartig, M. R. (1883). Rhizomorpha (Dematophora) necatrix n. sp. Untersuchung Forstbotanik Institut, München, 3, 95–173.Google Scholar
  34. Holevas, c. d., Chitzanidis, a., Pappas, a. c., tzamos, e. c., elena, K., psallidas, p. g., et al. (2000). Disease agents of cultivated plants observed in Greece from 1981 to 1990. Annales de l’Institut Phytopathologique Benaki, 19, 1–96.Google Scholar
  35. Ikeda, K., Nakamura, H., Arakawa, M., Matsumoto, N. (2004). Diversity and vertical transmission of double stranded RNA elements in root rot pathogens of trees, Heterobasidium mompa and Rosellinia necatrix. Mycological Research, 108, 626–634.PubMedCrossRefGoogle Scholar
  36. Johnson, W. C. (2000). Methods and results of screening for disease and insect-resistant apple rootstocks. The Compact Fruit Tree, 33, 108–111.Google Scholar
  37. Kanadani, G., Date, H., Nasu, H. (1998). Effect of Fluazinam soildrench on white root rot of grapevine. Annals of the Phytopathological Society of Japan, 64, 139–141.Google Scholar
  38. Kanematsu, S., Arakawa, M., Oikawa, Y., Onoue, M., Osaki, H., Nakamura, H. et al. (2004). A reovirus causes hypovirulence of Rosellinia necatrix. Phytopathology, 94, 561–568.CrossRefPubMedGoogle Scholar
  39. Khan, A. H. (1959). Biology and pathogenicity of Rosellinia necatrix (Hart.) Berl. Biologia Lahore, 5, 199–245.Google Scholar
  40. Kimura, Y., Nakajima, H., & Hamasaki, T. (1989). Structure of Rosellichalasin, a new metabolite produced by Rosellinia necatrix. Agricultural and Biological Chemistry, 53, 1699–1701.Google Scholar
  41. Kshirsagar, A., Reid, A. J., McColl, S. M., Saunders, V. A., Whalley, A. J. S., & Evans, E. H. (2001). The effect of fungal metabolites on leaves as detected by chlorophyll fluorescence. New Phytologist, 151, 451–457.CrossRefGoogle Scholar
  42. Kubomura, Y., Ieki, H., Itoi, S. (1970). Soil disinfestation with chloropicrin against white root rot fungus, Rosellinia necatrix (Hart.) Berl. in different soils. Sericultural Experiment Station, 24, 301–302.Google Scholar
  43. Kuwaki, S., Ohhira, I., Takahata, M., Hirota, A., Murata, Y., & Mikiro, T. (2004). Effects of the fermentation product of herbs by lactic acid bacteria against phytopathogenic filamentous fungi and on the growth of host plants. Journal of Bioscience and Bioengineering, 98, 187–192.PubMedGoogle Scholar
  44. Lamartine, R., Tsukada, M., Wilson, D., & Shirata, A. (2002). Antimicrobial activity of calixarenes. Comptes Rendus Chimie, 5, 163–169.CrossRefGoogle Scholar
  45. Lee, S. M., Ko, K., & Aldwinckle, H. S. (2000). Resistance of selected Malus Germplasm to Rosellinia necatrix. Fruit Varieties Journal, 54, 219–228.Google Scholar
  46. López-Herrera, C. J., Pérez-Jiménez, R. M., Zea-Bonilla, T., Basallote-Ureba, M. J., & Melero-Vara, J. M. (1998). Soil solarization in established avocado trees for control of Dematophora necatrix. Plant Disease, 82, 1088–1091.CrossRefGoogle Scholar
  47. López-Herrera, C. J., Pérez-Jiménez, R. M., Basallote-Ureba, M. J., Zea-Bonilla, T., & Melero-Vara, J. M. (1999). Loss of viability of Dematophora necatrix in solarized soils. European Journal of Plant Pathology, 105, 571–576.CrossRefGoogle Scholar
  48. Mantell, S. H., & Wheeler, B. E. J. (1973). Rosellinia and white root rot of Narcissus in the Scilly isles. Transactions of the British Mycological Society, 60, 23–35.Google Scholar
  49. Mappes, D., & Hiepko, G., (1984). New possibilities for controlling root diseases of plantation crops. Mededelingen van de Faculteit Landbouwwetenschappen, Rijksuniversiteit Gent, 49, 283–292.Google Scholar
  50. Martin, F. N. (2003). Development of alternative strategies for management of soilborne pathogens currently controlled with methyl bromide. Annual Review of Phytopathology, 41, 325–350.PubMedCrossRefGoogle Scholar
  51. Matsumoto, N., Nakamura, H., Ikeda, K., Arakawa, M., Uetake, Y., Okabe, I., & Hoshino, Y. (2002). Biocontrol of root diseases for fruit trees with dsRNA-merit and perspective. Bulletin OILB/SROP, 25, 61–63.Google Scholar
  52. Matsumoto, N. (1998). Biological control of root diseases with dsRNA based on population structure of pathogens. JARQ-Japan Agricultural Research Quarterly, 32, 31–35.Google Scholar
  53. Matuo, T., & Sakurai, Y. (1959). On the fungicidal effect of Chloropicrin and other few drugs upon Rosellinia necatrix and Corticium centrifugum in the soil. Journal of Sericultural Science of Japan, 28, 395–401.Google Scholar
  54. Melo, E. M. P. F., & Ferraz, J. F. P. (1990). Influência de várias fontes de carbono no crescimento de Rosellinia necatrix. Revista Ciências Agrárias, 13, 151–156.Google Scholar
  55. Mendoza, R. A., Ten Hoopen, G. M., Kass, D. C. J., Sánchez, V. A., & Krauss, U. (2003). Evaluation of mycoparasites as biocontrol agents of Rosellinia root rot in cocoa. Biological Control, 27, 210–227.CrossRefGoogle Scholar
  56. Minuto, A., Gilardi, G., Pomè, A., Garibaldi, A., & Gullino, M. L. (2000). Chemical and physical alternatives to methyl bromide for soil disinfestation: results against soilborne diseases of protected vegetable crops. Journal of Plant Pathology, 82, 179–186.Google Scholar
  57. Nakamura, H., Uetake, Y., Arakawa, M., Okabe, I., & Matsumoto, N. (2000). Observations on the teleomorph of white root rot fungus, Rosellinia necatrix, and a related fungus, Rosellinia aquila. Mycoscience, 41, 503–507.CrossRefGoogle Scholar
  58. Nitta, H., Hatamoto, M., & Kurihisa, H. (2002). Control of white root rot on Japanese pear using dazomet micro-granules. Bulletin of the Hiroshima Prefectural Agriculture Research Center, 72, 25–34.Google Scholar
  59. Pérez-Jiménez, R. M., Jiménez-Díaz, R. M., & López-Herrera, C. J. (2002). Somatic incompatibility of Rosellinia necatrix on avocado plants in southern Spain. Mycological Research, 106, 239–244.CrossRefGoogle Scholar
  60. Pérez-Jiménez, R. M., Zea-Bonilla, T. & López-Herrera, C. J. (2003a). Studies of Rosellinia necatrix perithecia found in nature on avocado roots. Journal of Phytopathology, 151, 660–664.CrossRefGoogle Scholar
  61. Pérez-Jiménez, R. M., Zea-Bonilla, T., Imbroda-Solano, I., López-Herrera, C. J., Barceló-Muñoz, A. (2003b). Selección de portainjertos de aguacate tolerantes a la podredumbre blanca causada por Rosellinia necatrix. V Congreso Mundial del aguacate. Granada-Málaga, Spain, October 19–24. Actas, Volumen II. De Andalucía, J. (ed.), Consejaria Agricoltura y Pesca, Sevilla, pp. 537–541.Google Scholar
  62. Pérez-Jiménez, R. M.(2006). A review of the biology and pathogenicity of Rosellinia necatrix – the cause of white root rot disease of fruit trees and other plants. Journal of Phytopathology, 154, 257–266.CrossRefGoogle Scholar
  63. Petrini, E. L., & Petrini, O. (2005). Morphological studies in Rosellinia (Xylariaceae): the first step towards a polyphasic taxonomy. Mycological Research, 109, 569–580.PubMedCrossRefGoogle Scholar
  64. Petrini, L.E. (1993). Rosellinia species of the temperate zones. Sydowia, 44, 169–281.Google Scholar
  65. Prillieux, E. (1902). Les périthéces du Rosellinia necatrix. Séance, 135, 275–278.Google Scholar
  66. Ruano-Rosa, D., Schena, L., Ippolito, A., López-Herrera, C. J. (2007). Comparison of conventional and molecular methods for the detection of Rosellinia necatrix in avocado orchards in southern Spain. Plant Pathology, 56, 251–256.CrossRefGoogle Scholar
  67. Runia, W. T. (2000). Steaming methods for soils and substrates. Acta Horticulturae, 532, 115–123.Google Scholar
  68. Ruzo, L. O. (2006). Physical, chemical and environmental properties of selected chemicals alternatives for the pre-plant use of methyl bromide as soil fumigant. Pest Management Science, 62, 99–113.PubMedCrossRefGoogle Scholar
  69. Saccas, A.M. (1956). Les Rosellinia des caféires en Oubangui-Chari. L’agronomie Tropicale, 11, 551–595.Google Scholar
  70. Sasaki, A., Kanematsu, S., Onoue, M., Oikawa, Y., Nakamura, H., & Yoshida, K. (2007). Artificial infection of Rosellinia necatrix with purified viral particles of a member of the genus Mycoreovirus reveals its uneven distribution in single colonies. Phytopathology, 97, 278–286.CrossRefPubMedGoogle Scholar
  71. Sawai, K., Okuno, T., & Ito, T. (1982). The toxicity of Cytochalasin E on plants. Annals of the Phytopathological Society of Japan, 48, 529–531.Google Scholar
  72. Schena, L. & Ippolito, A. (2003) Rapid and sensitive detection of Rosellinia necatrix in roots and soils by real time Scorpion-PCR. Journal of Plant Pathology, 85, 15–25.Google Scholar
  73. Schena, L., Nigro, F., Ippolito, A., & Gallitelli, D. (2004). Real-time quantitative PCR: a new technology to detect and study phytopathogenic and antagonistic fungi. European Journal of Plant Pathology, 110, 893–908.CrossRefGoogle Scholar
  74. Schena, L., Nigro, F., & Ippolito, A. (2002). Identification and detection of Rosellinia necatrix by conventional and real-time Scorpion PCR. European Journal of Plant Pathology, 108, 355–366.CrossRefGoogle Scholar
  75. Schena, L., Hughes, K. J. D., & Cooke, D. E. L. (2006). Detection and quantification of P. ramorum, P. kernoviae, P. citricola and P. quercina in symptomatic leaves by multiplex real-time PCR. Molecular Plant Pathology, 7, 365–379.CrossRefGoogle Scholar
  76. Sharma, M., & Sharma, S. K. (2002). Effect of thermal regimes on the survival of Dematophora necatrix, causing white root rot. Indian Phytopathology, 55, 310–312.Google Scholar
  77. Sharma, M., & Sharma, S. K. (2002b). Effect of soil solarisation on soil microflora with special reference to Dematophora necatrix in apple nurseries. Indian Phytopathology, 55, 158–162.Google Scholar
  78. Shirata, A., Tsukamoto, T., Yasui, H., Hata, T., Hayasaka, S., Kojima, A., & Kato, H. (2000). Isolation of bacteria producing bluish–purple pigment and use for dyeing. JARQ-Japan Agricultural Research Quarterly, 34, 131–140.Google Scholar
  79. Sivanesan, A., & Holliday, P. (1972). Rosellinia necatrix. Commonwealth Mycological Institute Description of Pathogenic Fungi and Bacteria, 352, 1–2.Google Scholar
  80. Sztejnberg, A., Azaizia, H., & Lisker, N. (1989). Effects of tannins and phelonic extracts from plant roots on the production of cellulose and polygalacturonasa by Dematophora necatrix. Phytoparasitica, 17, 49–53.Google Scholar
  81. Sztejnberg, A., Freeman, S., Chet, I., & Katan, J. (1987). Control of Rosellinia necatrix in soil and apple orchard by solarization and Trichoderma harziarum. Plant Disease, 71, 365–369.CrossRefGoogle Scholar
  82. Sztejnberg, A., Madar, Z., & Chet, I. (1980). Induction and quantification of microsclerotia in Rosellinia necatrix. Phytopathology, 70, 525–527.Google Scholar
  83. Sztejnberg, A., & Madar, Z. (1980). Host range of Dematophora necatrix, the cause of white root rot disease in fruit trees. Plant Disease, 64, 662–664.Google Scholar
  84. Sztejnberg, A., Azaizia, H., & Chet, I. (1983). The possible role of phenolic compounds in resistance of horticultural crops to Dematophora necatrix Hartig. Journal of Phytopathology, 107, 318–326.CrossRefGoogle Scholar
  85. Teixeira de Sousa, A. J., Guillaumin, J. J., Sharples, G. P., & Whalley, A. J. S. (1995). Rosellinia necatrix and white root rot of fruit trees and other plants in Portugal and nearby regions. Mycologist, 9, 31–33.CrossRefGoogle Scholar
  86. Teixeira de Sousa, A. J., & Whalley, A. J. S. (1991). Induction of mature stromata in Rosellinia necatrix and its taxonomic implications. Sydowia, 43, 281–290.Google Scholar
  87. Teixeira de Sousa, A. J. (1985). Lutte contre Rosellinia necatrix (Hartig) Berlese, agent du “pourridié laineux”: Sensibilité de quelques espéces végétales et lutte chimique. European Journal of Forest Pathology, 15, 323–332.CrossRefGoogle Scholar
  88. Ten Hoopen, G. M, Mendoza Garcia, R.A., & Krauss, U. (2006). The effect of soil chemical composition on the biocontrol of Rosellinia in cocoa. In: 7th meeting of the WG: Influence of a-biotic and biotic factors on biocontrol agents. Pine Bay, Kusadasi, Turkey, 22-25 May, pp. 41 (abstract).Google Scholar
  89. Ten Hoopen, G. M, & Krauss, U., 2006. Biology and control of Rosellinia bunodes, Rosellinia necatrix and Rosellinia pepo: A review. Crop Protection, 25, 89–107CrossRefGoogle Scholar
  90. Thienhirun, S., Whalley, A. J. S. (2001). Rosellinia necatrix: a potential threat in Thailand. Thai Phytopathology, 12, 164–168.Google Scholar
  91. Thomas, H. E., Wilhelm, S., & MaClean, N. A. (1953). Two root rots of fruit trees. U.S. Department of Agriculture. Year book of Agriculture, 702–704.Google Scholar
  92. Tourvieille de Labrouhe, D. (1982). Pénétration de Rosellinia necatrix (Hart.) Berl. dans les racines du pommier en conditions de contamination artificielle. Agronomie, 2, 553-560.CrossRefGoogle Scholar
  93. Tourvieille de Labrouhe, D. (1986). Etude sur les toxines produites par Rosellinia necatrix (Hart.) Berl. Agronomie, 6, 195–201.CrossRefGoogle Scholar
  94. Uetake, Y., Nakamura, H., Arakawa, M., Okabe, I., & Matsumoto, N. (2001). Inoculation of Lupinus luteus with white root rot fungus, Rosellinia necatrix to estimate virulence. Journal of General Plant Pathology, 67, 285–287.CrossRefGoogle Scholar
  95. Watanabe, T. (1991). Evaluation of Sordaria spp. as biocontrol agents against soilborne plant diseased caused by Pythium aphanidermatum and Dematophora necatrix. Annales of Phytopathological Society of Japan, 57, 680–687.Google Scholar
  96. Yasuda, M., & Katoh, K. (1989). Characteristics of bacteria isolated from soil and roots of fruit trees. Soil Science and Plant Nutrition, 35, 501–508.Google Scholar
  97. Yoshida, S., Hiradate, S., Tsukamoto, T., Hatakeda, K., & Shirata, A. (2001). Antimicrobial activity of culture filtrate of Bacillus amyloliquefaciens RC-2 isolated from mulberry leaves. Phytopathology 91, 181–187.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Leonardo Schena
    • 1
  • Franco Nigro
    • 2
  • Antonio Ippolito
    • 2
  1. 1.Dipartimento di Gestione dei Sistemi Agrari e Forestali Faculty of AgricultureMediterranean University of Reggio CalabriaItaly
  2. 2.Dipartimento di Protezione delle Piante e Microbiologia ApplicataUniversity of BariItaly

Personalised recommendations