Advertisement

Endophytic Fungi for Pest and Disease Management

  • Susheel Kumar
  • Nutan Kaushik
  • RuAngelie Edrada-Ebel
  • Rainer Ebel
  • Peter Proksch
Part of the Integrated Management of Plant Pests and Diseases book series (IMPD, volume 3)

Abstract

Endophytes are microorganisms that inhabit the interior of a healthy plants. They offer great-untapped potentials, which can be exploited to maintain healthy crops. Many cultivated and wild type plants have been investigated for endophytic fungal metabolites which include guanidine and pyrrolizidine alkaloids, indole derivatives, sesquiterpenes, isocoumarin derivatives. These metabolites show beneficial effects to crop plants and many of them also have pesticidal and antimicrobial activity against plant and human pests and pathogens. Full potentials and efforts needed are herein discussed.

Keywords

Endophytic Fungus Integrate Pest Management Tall Fescue Perennial Ryegrass Ergot Alkaloid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agusta, A., Ohashi, K., & Shibuya, H. (2006). Composition of the endophytic filamentous fungi isolated from the tea plant Camellia sinensis. Journal of Natural Medicine, 60, 268-272.CrossRefGoogle Scholar
  2. Ahmad, S., Govindarajan, S., Funk, C. R., & Johnson-Cicalese, J. M. (1985). Fatality of house crickets on perennial ryegrasses infected with a fungal endophyte. Entomologia Experimentalis et Applicata, 39, 183-190.CrossRefGoogle Scholar
  3. Arnold, A. E., Mejia, L. C., Kyllo, D., Rojas, E. I., Maynard, Z., Robbins, N., & Herre, E. A. (2003). Fungal endophyte limit pathogen damage in a tropical tree. Proceedings of the National Academy of Science,USA, 100, 15649-15654.CrossRefGoogle Scholar
  4. Aulakh R. S., Gill, J. P. S., Bedi, J. S., Sharma, J. K., Joia, B. S., & Ockerman, H. W. (2006). Organochlorine pesticide residues in poultry feed, chicken muscle and eggs at poultry farm in Punjab, India. Journal of the Science of Food and Agriculture, 86, 741-744.CrossRefGoogle Scholar
  5. Betina, Y. (1992). Biological effects of the antibiotic brefeldin-A (decumbin, cyanein, ascotoxin, synergisidin): a retrospective. Folia Microbiologica, 37, 3-11.PubMedCrossRefGoogle Scholar
  6. Brady, S. F., Singh, M. P., Janso, J. E., & Clardy, J. (2000b). Cytoskyrins A and B, new BIA active bisanthraquinones isolated from an endophytic fungus. Organic Letters, 2, 4047-4049.CrossRefGoogle Scholar
  7. Brady, S. F., Wagenaar, M. M., Singh, M. P., Janso, J. E., & Clardy, J. (2000a). The cytosporones, new octaketide antibiotics isolated from an endophytic fungus. Organic Letters, 2, 4043-4046.CrossRefGoogle Scholar
  8. Breen, J. P. (1994). Acremonium endophyte interactions with enhanced plant resistance to insects. Annual Review of Entomology, 39, 401-423.CrossRefGoogle Scholar
  9. Bush, L. P., Wilkinson, H. H., & Schardl, C. L. (1997). Bioprotective alkaloids of grass-fungal endophyte symbioses. Plant Physiology, 114, 1-7.PubMedGoogle Scholar
  10. Calhoun, L. A., Findlay, J. A., Miller, J. D. & Whitney, N. J. (1992). Metabolites toxic to spruce budworm from balsam fir needle endophytes. Mycological Research, 96, 281-286.Google Scholar
  11. Cao, L. X., You, J. L., & Zhou, S. N. (2002). Endophytic fungi from Musa acuminata leaves and roots in South China. World Journal of Microbiology and Biotechnology, 18, 169-171.CrossRefGoogle Scholar
  12. Chareprasert, S., Piapukiew, J., Thienhirun, S., Whalley, A. J. S., & Sihanonth, P. (2006). Endophytic fungi of teak leaves Tectona grandis L. and rain tree leaves Samanea saman Merr. World Journal of Microbiology and Biotechnology, 22,481-486.CrossRefGoogle Scholar
  13. Christensen, M. J., Bennett, R. J., & Schmid, J. (2002). Growth of Epichloe/Neotyphodium and p-endophytes in leaves of Lolium and Festuca grasses. Mycological Research, 106, 93-106.CrossRefGoogle Scholar
  14. Clay, K., & Cheplick, G. P. (1989). Effect of ergot alkaloids from fungal endophyte-infected grasses on fall armyworm (Spodoptera frugiperda). Journal of Chemical Ecology, 15, 169-181.CrossRefGoogle Scholar
  15. Clay, K., Hardy, T. N., & Hammond, J. A. M. (1985). Fungal endophytes of grasses and their effects on an insect herbivore. Oecologia, 66, 1-5.CrossRefGoogle Scholar
  16. Cole, R. J., Kirksey, J. W., Dorner, J. W., Wilson, D. N., Johnson, J. C., Johnson, J. A. N., et al. (1977). Mycotoxins produced by Aspergillus fumigatus species isolated from molded silage. Journal of Agricultural and Food Chemistry, 25, 826-830.PubMedCrossRefGoogle Scholar
  17. Daisy, B. H., Strobel, G. A., Castillo, U., Ezra, D., Sears, J., Weaver, D. K., & Runyon, J. B. (2002). Naphthalene, an insect repellent, is produced by Muscodor vitigenus, a novel endophytic fungus. Microbiology, 148, 3737-3741.PubMedGoogle Scholar
  18. Dingle, J., & McGee, P. A. (2003). Some endophytic fungi reduce the density of pustules of Puccinia recondita f. sp. tritici in wheat. Mycological Research, 107, 310-316.PubMedCrossRefGoogle Scholar
  19. Eddleston, M., Karalliedde, L., Buckley, N., Fernando, R., Hutchinson, G., Isbister, G., et al. (2002). Pesticide poisoning in the developing world – a minimum pesticides list. Lancet, 360, 1163-1167.PubMedCrossRefGoogle Scholar
  20. Elamo, P., Helander, M. L., Saloniemi, I. & Neuvonen, S. (1998). Interactions among endophytic fungi and a pathogenic rust fungus in birch leaves. http://www.bspp.org.uk/icpp98/2.9/5.html (accessed on 9 January, 2006).Google Scholar
  21. Evans, H. C., Holmes, K. A., & Thomas, S. E. (2003). Endophytes and mycoparasites associated with an indigenous forest tree, Theobroma gileri, in Ecuador and a preliminary assessment of their potential as biocontrol agents of cocoa diseases. Mycological Progress, 2, 149-160.CrossRefGoogle Scholar
  22. Faeth, S. H., & Fagan, W. F. (2002). Fungal endophytes: common host plant symbionts but uncommon mutualists. Integrative and Comparative Biology, 42, 360-368.CrossRefGoogle Scholar
  23. Findlay, J. A., Li, G., Miller, J. D., & Womiloju, T. O. (2003). Insect toxins from spruce endophytes. Canadian Journal of Chemistry, 81, 284-292.CrossRefGoogle Scholar
  24. Fisher, P. J., & Petrini, O. (1992). Fungal saprobes and pathogens as endophytes of rice (Oryza sativa L.). New Phytologist, 120, 137-143.CrossRefGoogle Scholar
  25. Geris dos Santos, R. M., Rodrigues-Fo, E., Rocha, W. C., & Teixeira, M. F. S. (2003). Endophytic fungi from Melia azedarach. World Journal of Microbiology and Biotechnology, 19, 767-770.CrossRefGoogle Scholar
  26. Gurney, K. A., & Mantle, P. G. (1993). Biosynthesis of 1-N-methylalbonoursin by an endophytic Streptomyces sp. isolated from perennial ryegrass. Journal of Natural Products, 56, 1194-1198.Google Scholar
  27. Hahn, H., Huth, W., Schoberlin, W., & Diepenbrock, W. (2003). Detection of endophytic fungi in Festuca sp. by means of tissue print immunoassay. Plant Breeding, 122, 217-222.Google Scholar
  28. Hallmann, J. & Sikora, R. A. (1996). Toxicity of fungal endophyte secondary metabolites to plant parasitic nematodes and soil-borne plant pathogenic fungi. European Journal of Plant Pathology, 102, 155-162.CrossRefGoogle Scholar
  29. Hardy, T. N., Clay, K., & Hammond, J. A. M. (1985). Fall armyworm (Lepidoptera: Noctuidae): A laboratory bioassay and larval preference study for the fungal endophyte of perennial ryegrass. Journal of Economic Entomology, 78, 571-575.Google Scholar
  30. Harper, J. K., Arif, A. M., Ford, E. J., Strobel, G. A., Porco, J. A., Tomer, D.P., et al. (2003). Pestacin: a 1,3-dihydro isobenzofuran from Pestalotiopsis microspora possessing antioxidant and antimycotic activities. Tetrahedron, 59, 2471-2476.CrossRefGoogle Scholar
  31. Hata, K., Atari, R., & Sone, K. (2002). Isolation of endophytic fungi from leaves of Pasania edulis and their within-leaf distributions. Mycoscience, 43, 369-373.CrossRefGoogle Scholar
  32. He, H., Yang, H. Y., Bigelis, R., Solum, E. H., Greenstein, M., & Carter, G. T. (2002). Pyrrocidines A and B, new antibiotics produced by a filamentous fungus. Tetrahedron Letters, 43, 1633-1636.CrossRefGoogle Scholar
  33. Hensens, O. D., Ondeyka, J. G., Dombrowski, A. W., Ostlind, D. A., & Zink, D. L. (1999). Isolation and structure of Nodulosporic acid A1 and A2, novel insecticides from a Nodulosporium sp. Tetrahedron Letters, 40, 5455-5458.CrossRefGoogle Scholar
  34. Horn, W. S., Simmonds, M. S. J., Schwartz, R. E., & Blaney, W. M. (1995). Phomopsichalasin, a novel antimicrobial agent from an endophytic Phomopsis sp. Tetrahedron, 51, 3969.CrossRefGoogle Scholar
  35. Ji, L. L., Song, Y. C., & Tan, R. X. (2004). A potent feed preservative candidate produced by Calcarisporium sp., an endophyte residing in stargrass (Cynodon dactylon). Journal of Applied Microbiology, 96, 352-358.PubMedCrossRefGoogle Scholar
  36. Johnson, M. C., Dahlman, L. D., Siegel, M. R., Bush, L. P., Latch, G. C. M., Potter, D. A., & Varney, D. R. (1985). Insect feeding deterrents in endophyte-infected tall fescue. Applied and Environmental Microbiology, 49, 568-571.PubMedGoogle Scholar
  37. Koshino, H., Togia, S., Terada, S. I., Yoshihara, T., Sakamura, S., Shimanuki, et al. (1989a). New fungitoxic sesquiterpenoids, chokols A-G, from stromata of Epichloe typhina and the absolute configuration of chokol. Agricultural and Biological Chemistry, 53, 789-796.Google Scholar
  38. Koshino, H., Yoshihara, T., Sakamura, S., Shimanuki, T., Sato, T., & Tajimi, A. (1989b). Novel C-11 epoxy fatty acid from stromata of Epichloe typhina on Phleum pratense. Agricultural and Biological Chemistry, 53, 2527-2528.Google Scholar
  39. Larran, S., Perelló, A., Simo, M. R., & Moreno, V. (2002). Isolation and analysis of endophytic microorganisms in wheat (Triticum aestivum L.) Leaves. World Journal of Microbiology and Biotechnology, 18, 683-686.CrossRefGoogle Scholar
  40. Larran, S., Monaco, C., & Alippi, H. E. (2001). Endophytic fungi in leaves of Lycopersicon esculentum Mill. World Journal of Microbiology and Biotechnology, 17, 181-184.CrossRefGoogle Scholar
  41. Larran, S., Perelló, A., Simón, M. R., & Moreno, V. (2006). The endophytic fungi from wheat (Triticum aestivum L.). World Journal of Microbiology and Biotechnology, 23, 565-572.CrossRefGoogle Scholar
  42. Li, J. Y., Strobel, G., Harper, J., Lobkovsky, E., & Clardy, J. (2000). Cryptocin, a potent tetramic acid antimycotic from the endophytic fungus Cryptosporiopsis cf. quercina. Organic Letters, 2, 767-770.CrossRefGoogle Scholar
  43. Li, J. Y., & Strobel, G. A. (2001). Jesterone and hydroxy-jesterone antioomycete cyclohexenone epoxides from the endophytic fungus Pestalotiopsis jesteri. Phytochemistry, 57, 261-265.PubMedCrossRefGoogle Scholar
  44. Lodge, D. J., Fisher, P. J., & Sutton, B. C. (1996). Endophytic fungi of Manilkara bidentata leaves in Puerto Rico. Mycologia, 88, 733-738.CrossRefGoogle Scholar
  45. Lu, H., Xou, W. X., Meng, J. C., Hu, J., & Tan, R. X. (2000). New bioactive metabolites produced by Colletotrichum sp., an endophytic fungus in Artemisia annua. Plant Science, 151, 67-73.CrossRefGoogle Scholar
  46. Mancini, F., Van Bruggen, A. H. C., Jiggins, J. L. S., Ambatipudi, A. C., & Murphy, H. (2005). Acute pesticide poisoning among female and male cotton growers in India. International Journal of Occupational and Environmental Health, 11, 221-232.PubMedGoogle Scholar
  47. Marshall, D., Tunali, B., & Nelson, L. R. (1999). Occurrence of fungal endophytes in species of wild Triticum. Crop Science, 39, 1507-1512.Google Scholar
  48. Morita, S., Azuma, M., Aoba, T., Satou, H., Narisawa, K., & Hashiba, T. (2003). Induced systemic resistance of Chinese cabbage to bacterial leaf spot and Alternaria leaf spot by the root endophytic fungus, Heteroconium chaetospira. Journal of General Plant Pathology, 69, 71-75.CrossRefGoogle Scholar
  49. Narisawa, K., Kawamata, H., Currah, R. S., & Hashiba, T. (2002). Suppression of Verticillium wilt in eggplant by some fungal root endophyte. European Journal of Plant Pathology, 108, 103-109.CrossRefGoogle Scholar
  50. Ondeyka, J. G., Helms, G. L., Hensens, O. D., Goetz, M. A., Zink, D. L., Tsipouras, A., et al. (1997). Nodulisporic acid A, a novel and potent insecticide from a Nodulosporium sp. isolation, structure determination, and chemical transformation. Journal of the American Chemical Society, 119, 8809-8816.CrossRefGoogle Scholar
  51. Park, J. H., Choi, G. J., Lee, H. B., Kim, K. M., Jung, H. S., Lee, S. W., et al. (2005). Griseofulvin from Xylaria sp. Strain F0010, and endophytic fungus of Abies holophylla and its antifungal activity against plant pathogenic fungi. Journal of Microbiology and Biotechnology, 15, 112-117.Google Scholar
  52. Pelaez, F., Cabello, A., Platas, G., Diez, M. T., del Val, A. G., Basilio, A., et al. (2000). The discovery of enfumafungin, a novel antifungal compound produced by an endophytic Hormonema species biological activity and taxonomy of the producing organisms. Systematic and Applied Microbiology, 23, 333-343.PubMedGoogle Scholar
  53. Pirttila, A. M., Pospiech, H., Laukkanen, H., Myllyla, R., & Hohtola, A. (2003). Two endophytic fungi in different tissues of scots pine buds (Pinus sylvestris L.). Microbial Ecology, 45, 53-62.PubMedCrossRefGoogle Scholar
  54. Quesada, M. E., Landa, B. B., Muñoz-Ledesma, J., Jiménez-Diaz, R. M., & Santiago-Alvarez, C. (2006). Endophytic colonisation of opium poppy, Papaver somniferum, by an entomopathogenic Beauveria bassiana strain. Mycopathologia, 161, 323-329.CrossRefGoogle Scholar
  55. Redman, R. S., Sheehan, K. B., Stout, R. G., Rodriguez, R. J., & Henson, J. M. (2002). Thermotolerance generated by plant/fungal symbiosis. Science, 298, 1581-1582.PubMedCrossRefGoogle Scholar
  56. Rowan, D. D., & Gaynor, D. L. (1986). Isolation of feeding deterrents against argentine stem weevil from ryegrass infected with the endophyte Acremonium loliae. Journal of Chemical Ecology, 12, 647-658.CrossRefGoogle Scholar
  57. Saikkonen, K., Wa, L. P., Helander, M. & Faeth, S. H. (2004). Evolution of endophyte–plant symbioses. Trends in Plant Science, 9, 275-280.PubMedCrossRefGoogle Scholar
  58. Schardl, C. L., & Phillips, T. D. (1997). Protective grass endophytes: where are they from and where are they going? Plant Disease, 81, 430-438.CrossRefGoogle Scholar
  59. Schardl, C. L., Leuchtmann, A., Chung, K. R., Penny, D., & Siegel, M. R. (1997). Coevolution by common descent of fungal symbionts (Epichloë spp.) and grass hosts. Molecular Biology and Evolution, 14, 133-143.Google Scholar
  60. Schmeda-Hirschmann, G., Hormazabal, E., Astudillo, L., Rodriguez, J. L., & Theoduloz, C. (2005). Secondary metabolites from endophytic fungi isolated from the Chilean gymnosperm Prumnopitys andina (Lleuque). World Journal of Microbiology and Biotechnology, 21, 27-32.CrossRefGoogle Scholar
  61. Schulz, B., Boyle, C., Draeger, S., Römmert, A. K., & Krohn, K. (2002). Endophytic fungi: a source of novel biologically active secondary metabolites. Mycological Research, 106, 996-1004.CrossRefGoogle Scholar
  62. Schulz, B., Rommert, A. K., Dammann, U., Aust, H. J., & Strack, D. (1999). The endophyte-host interaction: a balanced antagonism? Mycological Research, 103, 1275-1283.CrossRefGoogle Scholar
  63. Schulz, B., Sucker, J., Aust, H. J., Krohen, K., Ludewig, K., Jones, P. G. & Doring, D. (1995). Biologically active secondary metabolites of endophytic Pezicula sp. Mycological Research, 99, 1007-1015.CrossRefGoogle Scholar
  64. Schwarz, M., Koepcke, B., Weber, R. W. S., Sterner, O., & Anke, H. (2004). 3-Hydroxypropionic acid as a nematicidal principle in endophytic fungi. Phytochemistry, 65, 2239-2245.PubMedCrossRefGoogle Scholar
  65. Sette, L. D., Passarini, M. R. Z., Delarmelina, C., Salati, F., & Duarte, M. C. T. (2006). Molecular characterization and antimicrobial activity of endophytic fungi from coffee plants. World Journal of Microbiology and Biotechnology, 22, 1185-1195.CrossRefGoogle Scholar
  66. Siegel, M. R., Latch, G. C. M., Bush, L. P., Fannin, N. F., Rowan, D. D., Tapper, B. A., et al. (1990). Fungal endophyte-infected grasses: alkaloid accumulation and aphid response. Journal of Chemical Ecology, 16, 3301-3315.CrossRefGoogle Scholar
  67. Song, Y. C., Li, H., Ye, Y. H., Shan, C. Y., Yang, Y. M., & Tan, R. X. (2004). Endophytic naphthopyrone metabolites are co-inhibitors of xanthine oxidase, SW1116 cell and some microbial growths. FEMS Microbiology Letters, 241, 67-72.PubMedCrossRefGoogle Scholar
  68. Srinivasrao, C. H., Venkateswarlu, V., Surender, T., Eddleston, M., & Buckley, N. A. (2005). Pesticide poisoning in south India: opportunities for prevention and improved medical management. Tropical Medicine and International Health, 10, 581-588.CrossRefGoogle Scholar
  69. Strobel, G. A. (2006). Muscodor albus and its biological promise. Journal of Industrial Microbiology and Biotechnology, 33, 514-522.PubMedCrossRefGoogle Scholar
  70. Strobel, G. A., Dirkse, E., Sears, J., & Markworth, C. (2001). Volatile antimicrobials from Muscador albus, a novel endophytic fungus. Microbiology, 147, 2943-2950.PubMedGoogle Scholar
  71. Strobel, G. A., Miller, R. V., Martinez-Miller, C., Condron, M. M., Teplow, D. B., & Hess, W. M. (1999). Cryptocandin, a potent antimycotic from the endophytic fungus Cryptosporiopsis cf. quercina. Microbiology, 145, 1919-1926.PubMedGoogle Scholar
  72. Tan, R. X., & Zou, W. X. (2001). Endophytes: a rich source of functional metabolites. Natural Products Reports, 18, 448-459.CrossRefGoogle Scholar
  73. Tejesvi, M. V., Mahesh, B., Nalini, M. S., Prakash, H. S., Kini. K. R., Subbiah, V., & Shetty, H. S. (2005). Endophytic fungal assemblages from inner bark and twig of Terminalia arjuna W. & A. (Combretaceae). World Journal of Microbiology and Biotechnology, 21, 1535-1540.CrossRefGoogle Scholar
  74. Tian, X. L., Cao, L. X., Tan, H. M., Zeng, Q. G., Jia, Y. Y., Han, W. Q. & Zhou, S. N. (2004). Study on the communities of endophytic fungi and endophytic actinomycetes from rice and their antipathogenic activities in vitro. World Journal of Microbiology and Biotechnology, 20, 303-309.CrossRefGoogle Scholar
  75. Vurro, M., Evidente, A., Andolfi, A., Zonuo, M. C., Giordano, F., & Motta, A. (1998). Brefeldin A and α,β-dehydrocurvularin, two phytotoxins from Alternaria zinniae, a biocontrol agent of Xanthium occidentale. Plant Science, 138, 67-79 .CrossRefGoogle Scholar
  76. Wagenaar, M. M., Corwin, J., Strobel, G., & Clardy, J. (2000). Three new cytochalasins produced by an endophytic fungus in the genus Rhinocladiella. Journal of Natural Products, 63, 1692-1695.PubMedCrossRefGoogle Scholar
  77. Wang, F. W., Jiao, R. H., Cheng, A. B., Tan, S. H., & Song, Y. C. (2006). Antimicrobial potentials of endophytic fungi residing in Quercus variabilis and brefeldin A obtained from Cladosporium sp. World Journal of Microbiology and Biotechnology, 23, 79-83.CrossRefGoogle Scholar
  78. Wang, J., Huang, Y., Fang, M., Zhang, Y., Zheng, Z., Zhao, Y., & Su, W. (2002). Brefeldin A, a cytotoxin produced by Paecilomyces sp. and Aspergillus clavatus isolated from Taxus mairei and Torreya grandis. FEMS Immunology and Medical Microbiology, 34, 51-57.PubMedCrossRefGoogle Scholar
  79. Webber, J. (1981). A natural control of dutch elm disease. Nature, 292, 449.Google Scholar
  80. West, C. P. (1994). Physiology and drought tolerance of endophyte-infected grasses. In: Bacon C. W. & White J. F. (Eds), Biotechnology of endophytic fungi of grasses (pp. 87-99). Boca Raton, FL: CRC Press.Google Scholar
  81. Wicklow, D. T., Roth, S., Deyrup, S. T., & Gloer, J. B. (2005). A protective endophyte of maize: Acremonium zeae antibiotics inhibitory to Aspergillus flavus and Fusarium verticillioides. Mycological Research, 109, 610-618.PubMedCrossRefGoogle Scholar
  82. Wilson, A. D., Clement, S. L., & Kaiser, W. J. (1991). Survey and detection of endophytic fungi in Lolium germplasm by direct staining and aphid assays. Plant Disease, 75, 169-173.Google Scholar
  83. Wiyakrutta, S., Sriubolmas, N., Panphut, W., Thongon, N., Danwisetkanjana, K., Ruangrungsi, N., & Meevootisom, V. (2004). Endophytic fungi with anti-microbial, anti-cancer and anti-malarial activities isolated from Thai medicinal plants. World Journal of Microbiology and Biotechnology, 20, 265-272.CrossRefGoogle Scholar
  84. Xu, Q., Wang, J., & Huang, Y. (2004). Metabolites from mangrove endophytic fungus Dothiorellasp. Acta Oceanologica Sinica, 23, 541-547Google Scholar
  85. Yates, I. E., Widstrom, N. W., Bacon, C. W., Glenn, A., Hinton, D. M., Sparks, D., & Jaworski, A. J. (2005). Field performance of maize grown from Fusarium verticillioides-inoculated seed. Mycopathologia, 159, 65-73PubMedCrossRefGoogle Scholar
  86. Zhu, J. W., Nagasawa, H., Nagura, F., Mohamad, S. B., Uto, Y., Okura, K., & Hori, H. (2000). Elucidation of strict structural requirements of Brefeldin A as an inducer of differentiation and apoptosis. Bioorganic and Medicinal Chemistry, 8, 455-463.PubMedCrossRefGoogle Scholar
  87. Zou, W. X., Meng, J. C., Lu, H., Chen, G. X., Shi, G. X., Zhang, T. Y., & Tan, R. X. (2000). Metabolites of Colletotrichum gloeosporioides, an endophytic fungus in Artemisia mongolica. Journal of Natural Products, 63, 1529-1530.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Susheel Kumar
    • 1
  • Nutan Kaushik
    • 1
  • RuAngelie Edrada-Ebel
    • 2
  • Rainer Ebel
    • 2
    • 3
  • Peter Proksch
    • 2
  1. 1.TERI University Habitat placeNew DelhiIndia
  2. 2.Institut für Pharmazeutische Biologie und BiotechnologieHeinrich-Heine-Universität DüsseldorfGermany
  3. 3.Department of ChemistryUniversity of AberdeenMeston WalkScotland UK

Personalised recommendations