Poor water quality constrains the distribution and movements of twaite shad Alosa fallax fallax (Lacépède, 1803) in the watershed of river Scheldt

Part of the Developments in Hydrobiology book series (DIHY, volume 200)


Worldwide, river fragmentation is primarily responsible for the decline of populations of migrating fish. In particular, anadromous fish species, which necessarily migrate to fresh water to reproduce, are endangered since many are no longer able to reach their natural spawning sites. In addition, pollution of rivers effectively prevents upstream or downstream movements and blocks access to spawning grounds. This article investigates how poor water quality interferes with the life history cycle of twaite shad Alosa fallax fallax (Lacépède, 1803), an anadromous clupeid fish, in the watershed of River Scheldt, a heavily impacted environment in West Europe. We used two models based on known ecological and environmental information to explain past and present twaite shad distribution within the watershed and to make inferences about a future population recovery and juvenile habitat value. We demonstrated that historical spawning areas satisfy water quality conditions necessary to support spawning and successful development of early life history stages of the twaite shad. However, poor water quality conditions just upstream the freshwater-saltwater boundary still act as an effective migration barrier for upstream movement. As a consequence spawning grounds are inaccessible and the population is dominated by seasonal adults occurring in the lower estuarine part of the watershed. This article provides testable and diagnostic information to the watershed management in that it identifies habitat and water quality requirements needed to support the expected recovery of an endangered anadromous fish population.


Fish migration Twaite shad Logistic model Bioenergetics model Water pollution Freshwater tidal reach Anadromy River Scheldt 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acolas, M. L., V. Veron, H. Jourdan, M. L. Begout, M. A. R. Sabatic & A. L. Acolas, 2006. Upstream migration and reproductive patterns of a population of allis shad in a small river (L’Aulne, Brittany, France). ICES Journal of Marine Science 63: 476–484.CrossRefGoogle Scholar
  2. Aprahamian, M. W., 1988. The biology of the twaite shad Alosa fallax fallax (Lacépède) in the Severn Estuary. Journal of Fish Biology 33A: 141–152.CrossRefGoogle Scholar
  3. Aprahamian, M. W. & C. D. Aprahamian, 2001. The influence of water temperature and flow on year-class strength of twaite shad (Alosa fallax) from the River Severn, England. Bulletin Français de la Pêche et de la Pisciculture 362/363: 953–972.CrossRefGoogle Scholar
  4. Bartell, S. M., 1990. Ecosystem context for estimating stress induced reductions in fish populations. In Adams, S. M. (ed.), Biological Indicators of Stress in Fish. American Fisheries Society, 167–182.Google Scholar
  5. Beck, M. W., K. L. Heck, K. W. Able, D. L. Childers, D. B. Eggleston, B. M. Gillanders, B. Halpern, C. G. Hays, K. Hoshino, T. J. Minello, R. J. Orth, P. F. Sheridan & M. R. Weinstein. 2001. The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates. Bioscience 51: 633–641.CrossRefGoogle Scholar
  6. Brandt, S. B., D. M. Mason & E. V. Patrick, 1992. Spatially-explicit models of fish growth rate. Fisheries 17: 23–33.CrossRefGoogle Scholar
  7. Caswell, P. A. & M. W. Aprahamian, 2001. Use of River Habitat Survey to determine the spawning habitat characteristics of twaite shad (Alosa fallax fallax). Bulletin Français de la Pêche et de la Písciculture 362/363: 919–929.CrossRefGoogle Scholar
  8. Chittenden, M. E., 1973. Effects of handling on oxygen requirements of American shad (Alosa sapidissima). Journal of the Fisheries Research Board of Canada 30: 105–110.Google Scholar
  9. Eklöv, A. G., L. A. Greenberg, C. Bronmark, P. Larsson & O. Berglund, 1998. Response of stream fish to improved water quality: a comparison between the 1960s and 1990s. Freshwater Biology 40: 771–782.CrossRefGoogle Scholar
  10. Gerkens M. & R. Thiel, 2001. A comparison of different habitats as nursery areas for twaite shad (Alosa fallax Lacépède) in the tidal freshwater region of the Elbe River Germany. Bulletin Français de la Pêche et de la Pisciculture 362/363: 773–784.CrossRefGoogle Scholar
  11. Grimm, V., 1999. Ten years of individual-based modelling in ecology: what have we learned and what could we learn in the future? Ecological Modelling 115: 129–148.CrossRefGoogle Scholar
  12. Hansson, L., 2003. Why ecology fails at applications: should we consider variability more than regularity. Oikos 100: 624–627.CrossRefGoogle Scholar
  13. Hanson, P. C., Johnson T. B., Schindler D. E. & J. F. Kitchell, 1997. Fish Bioenergetics 3.0 for Windows. University of Wisconsin Sea Grant Institute.Google Scholar
  14. Höök, T. O., E. S. Rutherford, S. J. Brines, D. M. Mason, D. J. Schwab, M. J. McCormick, G. W. Fleischer & T. DeSorcie, 2003. Spatially explicit measures of production of young alewives in Lake Michigan: linkage between essential fish habitat and recruitment. Estuaries 26: 21–29.CrossRefGoogle Scholar
  15. Kitchell, J. F., D. J. Stewart & D. Weiniger, 1977. Applications of a bioenergetics model to yellow perch (Perca flavescens) and walleye (Stizostedion vitreum vitreum). Journal of the Fisheries Research Board of Canada 34: 1922–1935.Google Scholar
  16. Limburg, K., 1996. Modelling the ecological constraints on growth and movement of juvenile American shad (Alosa sapidissima) in the Hudson river estuary. Estuaries 19: 794–813.CrossRefGoogle Scholar
  17. Luo, J. G., K. J. Hartman, S. B. Brandt, C. F. Cerco & T. H. Rippetoe, 2001. A spatially-explicit approach for estimating carrying capacity: an application for the Atlantic menhaden (Brevoortia tyrannus) in Chesapeake Bay. Estuaries 24: 545–556.CrossRefGoogle Scholar
  18. Maitland, P. S., 2003. Ecology of the River, Brook and Sea Lamprey. Conserving Natura 2000 Rivers Ecology Series No. 5. English Nature, Peterborough.Google Scholar
  19. Maitland, P. S. & T. W. Hatton-Ellis, 2003. Ecology of the Allis and Twaite Shad. Conserving Natura 2000 Rivers Ecology Series No. 3. English Nature, Peterborough.Google Scholar
  20. Möller, H. & U. Scholz, 1991. Avoidance of oxygen-poor zones by fish in the Elbe River. Journal of Applied Ichthyology 7: 176–182.CrossRefGoogle Scholar
  21. Nijssen, H. & S. J. De Groot, 1987. De Vissen van Nederland. Stichting KNNV-Uitgeverij, Utrecht.Google Scholar
  22. Niklitschek, E. J. & D. H. Secor, 2005. Modeling spatial and temporal variation of suitable nursery habitats for Atlantic sturgeon in the Chesapeake Bay. Estuarine. Coastal and Shelf Science 64: 135–148.CrossRefGoogle Scholar
  23. Oesmann, S. & R. Thiel, 2001. Feeding of juvenile twaite shad (Alosa fallax Lacepede, 1803) in the Elbe estuary. Bulletin Français de la Pêche et de la Pisciculture 362/363: 785–800.CrossRefGoogle Scholar
  24. Pauly, D., 1982. On the interrelationships between natural mortality, growth parameters, and mean environmental temperature in 175 fish stocks. Journal du Conseil international d’Exploration de la Mer 39: 175–192.Google Scholar
  25. Poon, W. L., C. Y. Hung & D. J. Randall, 2001. The effect of aquatic hypoxia on fish. In Thurston, R.V. (eds), Fish Physiology, Toxicology and Water Quality. Environmental Protection Agency, USA 31–50.Google Scholar
  26. Roy, D., G. D. Haffner & S. B. Brandt, 2004. Estimating fish production potentials using a temporally explicit model. Ecological Modelling 173: 241–257.CrossRefGoogle Scholar
  27. Rudstam, L. G., 1988. Exploring the dynamics of herring consumption in the Baltic: applications of an energetic model of fish growth. Kieler Meeresforschungen Sonderheft 6: 312–322.Google Scholar
  28. Secor, D. H. & E. J. Niklitschek, 2001. Sensitivity of sturgeons to environmental hypoxia: a review of physiological and ecological evidence. In Thurston, R. V. (ed.), Fish Physiology, Toxicology and Water Quality. Environmental Protection Agency, USA, 61–78.Google Scholar
  29. Stewart, D. J. & F. P. Binkowski, 1986. Dynamics of consumption and food conversion by Lake Michigan alewives — an energetics modelling synthesis. Transactions of the American Fisheries Society 115: 643–661.CrossRefGoogle Scholar
  30. Stier, D. J. & J. H. Crance, 1985. Habitat suitability index models and instream flow suitability curves: American shad. U.S. Fish and Wildlife Service Biological Report 82: 1–34.Google Scholar
  31. Struyf, E., S. Van Damme & P. Meire, 2004. Possible effects of climate change on estuarine nutrient fluxes: a case study in the highly nutrified Schelde estuary (Belgium, The Netherlands). Estuarine, Coastal and Shelf Science 60: 649–661.CrossRefGoogle Scholar
  32. Van Damme, P. A., K. Hostens & F. Ollevier, 1994. Fish species of the lower Zeeschelde (Belgium)—a comparison with historical checklists. Belgian Journal of Zoology 124: 93–103.Google Scholar
  33. Van Damme, S., P. Meire, H. Maeckelberghe, M. Verdievel, L. Bougoing, E. Taverniers, T. Ysebaert & G. Wattel, 1995. De waterkwaliteit van de Zeeschelde: evolutie in de voorbije dertig jaar. Water 85: 244–256.Google Scholar
  34. Van Damme, S., E. Struyf, T. Maris, T. Ysebaert, F. Dehairs, M. Tackx, C. Heip & P. Meire, 2005. Spatial and temporal patterns of water quality along the estuarine gradient of the Scheldt estuary (Belgium and the Netherlands): results of an integrated monitoring approach. Hydrobiologia 540: 29–45.CrossRefGoogle Scholar
  35. Van den Bergh, E., S. Van Damme, J. Graveland, D. de Jong, I. Baten, & P. Meire, 2005. Ecological rehabilitation of the Schelde Estuary (The Netherlands-Belgium: Northwest Europe): Linking ecology, safety against floods, and accessiblity for port development Source. Restoration Ecology 13: 204–214.CrossRefGoogle Scholar
  36. Vrielynck, S., C. Belpaire, A. Stabel, J. Breine & P. Quataert. 2003. De visbestanden in Vlaanderen anno 1840–1950. Een historische schets van de referentietoestand van onze waterlopen aan de hand van de visstand, ingevoerd in een databank en vergeleken met de actuele toestand. Instituut voor Bosbouw en Wildbeheer en Afdeling Water (AMINAL), Groenendaal, 271 pp.Google Scholar
  37. Wannamaker C. M. & J. A. Rice, 2000. Effects of hypoxia on movements and behavior of selected estuarine organisms from the southeastern United States. Journal of Experimental Marine Biology and Ecology 249: 145–163.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Vledia B.V. 2008

Authors and Affiliations

  1. 1.Flemish Institute for Technological Research, Integrated Environmental StudiesVITOMolBelgium
  2. 2.Laboratory of Aquatic EcologyKatholieke Universiteit LeuvenLeuvenBelgium
  3. 3.Research Institute for Nature and ForestGroenendaalBelgium

Personalised recommendations