Skip to main content

MicroRNAs and Regenerative Medicine

  • Chapter
Current Perspectives in microRNAs (miRNA)
  • 1392 Accesses

Regenerative medicine is a multidisciplinary field that aims to repair, replace or regenerate cells, tissues or organs. MicroRNAs are regulators of gene expression that were identified only decades ago and recently have been shown potential therapeutic value for diverse diseases. Thus, combination of microRNAs and regenerative medicine become an emerging interdisciplinary medical field that may yield new exciting possibilities for clinical medicine. In this chapter, we review the therapeutic prospects of microRNAs in regenerative medicine. On one hand, microRNAs have important functions in the differentiation and proliferation of stem cells, which have a key function in the regeneration and transplantation of organs, and are involved in mammalian development, understanding of which will benefit tissue engineers. On the other hand, microRNAs are identified as potential therapeutic target for diverse diseases, especially for cancers. Even more, some indirect evidences show that the initiation and maintenance of cancer stem cells may be under their controls. Thus accumulated understanding of microRNAs functions in different biological processes will bring new approaches for regeneration medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Haseltine, W.A. (2003). Regenerative medicine: a future healing art. Brookings Rev 21, 38-43.

    Google Scholar 

  2. Alonso, L., and Fuchs, E. (2003). Stem cells of the skin epithelium. Proc. Natl. Acad. Sci. USA 100, 11830-11835.

    CAS  PubMed  Google Scholar 

  3. Harada, S., and Rodan, G.A. (2003). Control of osteoblast function and regulation of bone mass. Nature 423, 349-355.

    CAS  PubMed  Google Scholar 

  4. Dor, Y., Brown, J., Martinez, O.I., and Melton, D.A. (2004). Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature 429, 41-46.

    CAS  PubMed  Google Scholar 

  5. Leor, J., Amsalem, Y., and Cohen, S. (2005). Cells, scaffolds, and molecules for myocardial tissue engineering. Pharmacol. Ther. 105, 151-163.

    CAS  PubMed  Google Scholar 

  6. Radtke, F., and Clevers, H. (2005). Self-renewal and cancer of the gut: two sides of a coin. Science 307, 1904-1909.

    CAS  PubMed  Google Scholar 

  7. Sage, C., Huang, M., Karimi, K., Gutierrez, G., Vollrath, M.A., Zhang, D.S., Garcia-Anoveros, J., Hinds, P.W., Corwin, J.T., Corey, D.P., and Chen, Z. (2005). Proliferation of functional hair cells in vivo in the absence of the retinoblastoma protein. Science 307, 1114-1118.

    CAS  PubMed  Google Scholar 

  8. Lee, R.C., Feinbaum, R.L., and Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843-854.

    CAS  PubMed  Google Scholar 

  9. Bartel, D.P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281-297.

    CAS  PubMed  Google Scholar 

  10. Tsonis, P.A., Call, M.K., Grogg, M.W., Sartor, M.A., Taylor, R.R., Forge, A., Fyffe, R., Goldenberg, R., Cowper-Sal Lari, R., and Tomlinson, C.R. (2007). MicroRNAs and regenera-tion: let-7 members as potential regulators of dedifferentiation in lens and inner ear hair cell regeneration of the adult newt. Biochem. Biophys. Res. Commun. 362, 940-945.

    CAS  PubMed  Google Scholar 

  11. Horowitz, M.M. (1999). Uses and growth of hematopoietic cell transplantation. In: FormanSJ, ed. Hematopoietic cell transplantation. Second ed. , Malden, MA: Blackwell Science, pp. 12-18.

    Google Scholar 

  12. Santos, G.W. (2000). Historical background to hematopoietic stem cell transplantation. In: AtkinsonK, ed. Clinical bone marrow and blood stem cell transplantation. Cambridge: Cambridge University Press, pp. 1-12.

    Google Scholar 

  13. Domen, J., Wagers, A., and Weissman, I.L. (2006). Bone marrow (hematopoietic) stem cells. In: Regenerative medicine. Washington, DC: Department of Health and Human Services, pp. 13-34.

    Google Scholar 

  14. Barberi, T., Klivenyi, P., Calingasan, N.Y., Lee, H., Kawamata, H., Loonam, K., Perrier, A.L., Bruses, J., Rubio, M.E., Topf, N., Tabar, V., Harrison, N.L., Beal, M.F., Moore, M.A., and Studer, L. (2003). Neural subtype specification of fertilization and nuclear transfer embryonic stem cells and application in parkinsonian mice. Nat. Biotechnol. 21, 1200-1207.

    CAS  PubMed  Google Scholar 

  15. Rao, M.S., and Mattson, M.P. (2001). Stem cells and aging: expanding the possibilities. Mech. Ageing Dev. 122, 713-734.

    CAS  PubMed  Google Scholar 

  16. Zhang, B., Pan, X., and Anderson, T.A. (2006). MicroRNA: a new player in stem cells. J. Cell Physiol. 209, 266-269.

    CAS  PubMed  Google Scholar 

  17. Lee, Y.S., Nakahara, K., Pham, J.W., Kim, K., He, Z., Sontheimer, E.J., and Carthew, R.W. (2004). Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 117, 69-81.

    CAS  PubMed  Google Scholar 

  18. Hatfield, S.D., Shcherbata, H.R., Fischer, K.A., Nakahara, K., Carthew, R.W., and Ruohola-Baker, H. (2005). Stem cell division is regulated by the microRNA pathway. Nature 435, 974-978.

    CAS  PubMed  Google Scholar 

  19. Chalfie, M., Horvitz, H.R., and Sulston, J.E. (1981). Mutations that lead to reiterations in the cell lineages of C. elegans. Cell 24, 59-69.

    CAS  PubMed  Google Scholar 

  20. Ambros, V., and Horvitz, H.R. (1984). Heterochronic mutants of the nematode Caenorhabditis elegans. Science 226, 409-416.

    CAS  PubMed  Google Scholar 

  21. Ruvkun, G., and Giusto, J. (1989). The Caenorhabditis elegans heterochronic gene lin-14 encodes a nuclear protein that forms a temporal developmental switch. Nature 338, 313-319.

    CAS  PubMed  Google Scholar 

  22. Reinhart, B.J., Slack, F.J., Basson, M., Pasquinelli, A.E., Bettinger, J.C., Rougvie, A.E., Horvitz, H.R., and Ruvkun, G. (2000). The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403, 901-906.

    CAS  PubMed  Google Scholar 

  23. Abbott, A.L., Alvarez-Saavedra, E., Miska, E.A., Lau, N.C., Bartel, D.P., Horvitz, H.R., and Ambros, V. (2005). The let-7 MicroRNA family members mir-48, mir-84 and mir-241 func-tion together to regulate developmental timing in Caenorhabditis elegans. Dev. Cell 9, 403-414.

    CAS  PubMed  Google Scholar 

  24. Lin, M., Jones-Rhoades, M.W., Lau, N.C., Bartel, D.P., and Rougvie, A.E. (2005). Regulatory mutations upstream of mir-48, a C. elegans let-7 family microRNA cause developmental tim-ing defects. Dev. Cell 9, 415-422.

    Google Scholar 

  25. Chen, C.Z., Li, L., Lodish, H.F., and Bartel, D.P. (2004). MicroRNAs modulate hematopoietic lineage differentiation. Science 303, 83-86.

    CAS  PubMed  Google Scholar 

  26. Zhou, B., Wang, S., Mayr, C., Bartel, D.P., and Lodish, H.F. (2007). miR-150, a microRNA expressed in mature B and T cells, blocks early B cell development when expressed prema-turely. Proc. Natl. Acad. Sci. USA 104, 7080-7085.

    CAS  PubMed  Google Scholar 

  27. Makeyev, E.V., Zhang, J., Carrasco, M.A., and Maniatis, T. (2007). The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol. Cell. 27, 435-448.

    CAS  PubMed  Google Scholar 

  28. Kanellopoulou, C., Muljo, S.A., Kung, A.L., Ganesan, S., Drapkin, R., Jenuwein, T., Livingston, D.M., and Rajewsky, K. (2005). Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev. 19, 489-501.

    CAS  PubMed  Google Scholar 

  29. Murchison, E.P., Partridge, J.F., Tam, O.H., Cheloufi, S., and Hannon, G.J. (2005). Characterization of Dicer-deficient murine embryonic stem cells. Proc. Natl. Acad. Sci. USA 102, 12135-12140.

    CAS  PubMed  Google Scholar 

  30. Han, J., Lee, Y., Yeom, K.H., Nam, J.W., Heo, I., Rhee, J.K., Sohn, S.Y., Cho, Y., Zhang, B.T., and Kim, V.N. (2006). Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 125, 887-901.

    CAS  PubMed  Google Scholar 

  31. Wang, Y., Medvid, R., Melton, C., Jaenisch, R., and Blelloch, R. (2007). DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nat. Genet. 39, 380-385.

    CAS  PubMed  Google Scholar 

  32. Houbaviy, H.B., Murray, M.F., and Sharp, P.A. (2003). Embryonic stem-cell-specific micro-RNAs. Dev. Cell 5, 351-358.

    CAS  PubMed  Google Scholar 

  33. Suh, M.R., Lee, Y., Kim, J.Y., Kim, S.K., Moon, S.H., Lee, J.Y., Cha, K.Y., Chung, H.M., Yoon, H.S., Moon, S.Y., Kim, V.N., and Kim, K. (2004). Human embryonic stem cells express a unique set of microRNAs. Dev. Biol. 270, 488-498.

    CAS  PubMed  Google Scholar 

  34. Flynt, A.S., Li, N., Thatcher, E.J., Solnica-Krezel, L., and Patton, J.G. (2007) Zebrafish miR-214 modulates Hedgehog signaling to specify muscle cell fate. Nat. Genet. 39, 259-263.

    CAS  PubMed  Google Scholar 

  35. Cobb, J., and Duboule, D. (2004). Tracing microRNA patterns in mice. Nat. Genet. 36, 1033-1034.

    CAS  PubMed  Google Scholar 

  36. Yekta, S., Shih, I.H., and Bartel, D.P. (2004). MicroRNA-directed cleavage of HOXB8 mRNA. Science 304, 594-596.

    CAS  PubMed  Google Scholar 

  37. Hornstein, E., Mansfield, J.H., Yekta, S., Hu, J.K., Harfe, B.D., McManus, M.T., Baskerville, S., Bartel, D.P., and Tabin, C.J. (2005). The microRNA miR-196 acts upstream of Hoxb8 and Shh in limb development. Nature 438, 671-674.

    CAS  PubMed  Google Scholar 

  38. Sugatani, T., and Hruska, K.A. (2007). MicroRNA-223 is a key factor in osteoclast differenti-ation. J. Cell Biochem. 101, 996-999.

    CAS  PubMed  Google Scholar 

  39. Chen, J.F., Mandel, E.M., Thomson, J.M., Wu, Q., Callis, T.E., Hammond, S.M., Conlon, F.L., and Wang, D.Z. (2006). The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat. Genet. 38, 228-233.

    CAS  PubMed  Google Scholar 

  40. Xu, C., Lu, Y., Pan, Z., Chu, W., Luo, X., Lin, H., Xiao, J., Shan, H., Wang, Z., and Yang, B. (2007). The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes. J. Cell Sci. 120, 3045-3052.

    CAS  PubMed  Google Scholar 

  41. Yi, R., O’Carroll, D., Pasolli, H.A., Zhang, Z., Dietrich, F.S., Tarakhovsky, A., and Fuchs, E. (2006). Morphogenesis in skin is governed by discrete sets of differentially expressed miR-NAs. Nat. Genet. 38, 456-462.

    Google Scholar 

  42. Andl, T., Murchison, E.P., Liu, F., Zhang, Y., Yunta-Gonzalez, M., Tobias, J.W., Andl, C.D., Seykora, J.T., Hannon, G.J., and Millar, S.E. (2006). The miRNA-processing enzyme dicer is essential for the morphogenesis and maintenance of hair follicles. Curr. Biol. 16, 1041-1049.

    CAS  PubMed  Google Scholar 

  43. Giraldez, A.J., Mishima, Y., Rihel, J., Grocock, R.J., Van Dongen, S., Inoue, K., Enright, A.J., and Schier, A.F. (2006). Zebrafish MiR-430 promotes deadenylation and clearance of mater-nal mRNAs. Science 312, 75-79.

    CAS  PubMed  Google Scholar 

  44. Tang, F., Kaneda, M., O’Carroll, D., Hajkova, P., Barton, S.C., Sun, Y.A., Lee, C., Tarakhovsky, A., Lao, K., and Surani, M.A. (2007). Maternal microRNAs are essential for mouse zygotic development. Genes Dev. 21, 644-648.

    CAS  PubMed  Google Scholar 

  45. Lim, L.P., Lau, N.C., Garrett-Engele, P., Grimson, A., Schelter, J.M., Castle, J., Bartel, D.P., Linsley, P.S., and Johnson, J.M. (2005). Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433, 769-773.

    CAS  PubMed  Google Scholar 

  46. Lewis, B.P., Burge, C.B., and Bartel, D.P. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA rargets. Cell 120,15-20.

    CAS  PubMed  Google Scholar 

  47. Lukiw, W.J. (2007). Micro-RNA speciation in fetal, adult and Alzheimer’s disease hippocam-pus. Neuroreport 18, 297-300.

    CAS  PubMed  Google Scholar 

  48. Wilfred, B.R., Wang, W.X., and Nelson, P.T. (2007). Energizing miRNA research: a review of the role of miRNAs in lipid metabolism, with a prediction that miR-103/107 regulates human metabolic pathways. Mol. Genet. Metab. 91, 209-217.

    CAS  PubMed  Google Scholar 

  49. Xu, P., Vernooy, S.Y., Guo, M., and Hay, B.A. (2003). The Drosophila miRNA Mir-14 sup-presses cell death and is required for normal fat metabolism. Curr. Biol. 13, 790-795.

    CAS  PubMed  Google Scholar 

  50. Krützfeldt, J., Rajewsky, N., Braich, R., Rajeev, K.G., Tuschl, T., Manoharan, M., and Stoffel, M. (2005). Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438, 685-689.

    PubMed  Google Scholar 

  51. Esau, C., Davis, S., Murray, S.F., Yu, X.X., Pandey, S.K., Pear, M., Watts, L., Booten, S.L., Graham, M., McKay, R., Subramaniam, A., Propp, S., Lollo, B.A., Freier, S., Bennett, C.F., Bhanot, S., and Monia, B.P. (2006). miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab. 3, 87-98.

    CAS  PubMed  Google Scholar 

  52. Teleman, A.A., Maitra, S., and Cohen, S.M. (2006). Drosophila lacking miRNA miR-278 are defective in energy homeostasis. Genes Dev. 15, 417-422.

    Google Scholar 

  53. Poy, M.N., Eliasson, L., Krutzfeldt, J., Kuwajima, S., Ma, X., Macdonald, P.E., Pfeffer, S., Tuschl, T., Rajewsky, N., Rorsman, P., and Stoffel, M. (2004). A pancreatic islet-specific miRNA regulates insulin secretion. Nature 432, 226-230.

    CAS  PubMed  Google Scholar 

  54. Callis, T.E., Chen, J.F., and Wang, D.Z. (2007). MicroRNAs in skeletal and cardiac muscle development. DNA Cell Biol. 26, 219-225.

    CAS  PubMed  Google Scholar 

  55. Sokol, N.S., and Ambros, V. (2005). Mesodermally expressed Drosophila miRNA-1 is regu-lated by Twist and is required in muscles during larval growth. Genes Dev. 19, 2343-2354.

    CAS  PubMed  Google Scholar 

  56. Anderson, C., Catoe, H., and Werner, R. (2006). MIR-206 regulates connexin43 expression during skeletal muscle development. Nucleic. Acids. Res. 34, 5863-5871.

    CAS  PubMed  Google Scholar 

  57. Kim, H.K., Lee, Y.S., Sivaprasad, U., Malhotra, A., and Dutta, A. (2006). Muscle-specific microRNA miR-206 promotes muscle differentiation. J. Cell Biol. 174, 677-687.

    CAS  PubMed  Google Scholar 

  58. Naguibneva, I., Ameyar-Zazoua, M., Polesskaya, A., Ait-Si-Ali, S., Groisman, R., Souidi, M., Cuvellier, S., and Harel-Bellan, A. (2006). The miRNA miR-181 targets the homeobox pro-tein Hox-A11 during mammalian myoblast differentiation. Nat. Cell Biol. 8, 278-284.

    CAS  PubMed  Google Scholar 

  59. Zhao, Y., Samal, E., and Srivastava, D. (2005). Serum response factor regulates a muscle-spe-cific miRNA that targets Hand2 during cardiogenesis. Nature 436, 214-220.

    CAS  PubMed  Google Scholar 

  60. Yang, B., Lin, H., Xiao, J., Lu, Y., Luo, X., Li, B., Zhang, Y., Xu, C., Bai, Y., Wang, H., et al. (2007). The muscle-specific micromicroRNA miR-1 regulates cardiac arrhythmogenic poten-tial by targeting GJA1 and KCNJ2. Nat. Med. 13, 486-491.

    CAS  PubMed  Google Scholar 

  61. van Rooij, E., Sutherland, L.B., Liu, N., Williams, A.H., McAnally, J., Gerard, R.D., Richardson, J.A., and Olson, E.N. (2006). A signature pattern of stress-responsive microR-NAs that can evoke cardiac hypertrophy and heart failure. Proc. Natl. Acad. Sci. USA 103, 18255-18260.

    CAS  PubMed  Google Scholar 

  62. van Rooij, E., Sutherland, L.B., Qi, X., Richardson, J.A., Hill, J., and Olson, E.N. (2007). Control of stress-dependent cardiac growth and gene expression by a MicroRNA. Science 316, 575-579.

    CAS  PubMed  Google Scholar 

  63. Ikeda, S., Kong, S.W., Lu, J., Bisping, E., Zhang, H., Allen, P.D., Golub, T.R., Pieske, B., and Pu, W.T. (2007). Altered microRNA expression in human heart disease. Physiol. Genomics. 31, 367-373.

    CAS  PubMed  Google Scholar 

  64. Giraldez, A.J., Cinalli, R.M., Glasner, M.E., Enright, A.J., Thomson, J.M., Baskerville, S., Hammond, S.M., Bartel, D.P., and Schier, A.F. (2005). MicroRNAs regulate brain morpho-genesis in zebrafish. Science 308, 833-838.

    CAS  PubMed  Google Scholar 

  65. Chen, W., Jensen, L.R., Gecz, J., Fryns, J.P., Moraine, C., de Brouwer, A., Chelly, J., Moser, B., Ropers, H.H., and Kuss, A.W. (2007). Mutation screening of brain-expressed X-chromo-somal miRNA genes in 464 patients with nonsyndromic X-linked mental retardation. Eur. J. Hum. Genet. 15, 375-378.

    CAS  PubMed  Google Scholar 

  66. Kim, J., Inoue, K., Ishii, J., Vanti, W.B., Voronov, S.V., Murchison, E., Hannon, G., and Abeliovich, A. (2007). A MicroRNA Feedback Circuit in Midbrain Dopamine Neurons. Science 317, 1220-1224.

    CAS  PubMed  Google Scholar 

  67. Li, Q.J., Chau, J., Ebert, P.J., Sylvester, G., Min, H., Liu, G., Braich, R., Manoharan, M., Soutschek, J., Skare, P., Klein, L.O., Davis, M.M., and Chen, C.Z. (2007). miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell 129, 147-161.

    CAS  PubMed  Google Scholar 

  68. O’Connell, R.M., Taganov, K.D., Boldin, M.P., Cheng, G., and Baltimore, D. (2007). MicroRNA-155 is induced during the macrophage inflammatory response. Proc. Natl. Acad. Sci. USA 104,1604-1609.

    PubMed  Google Scholar 

  69. Rodriguez, A., Vigorito, E., Clare, S., Warren, M.V., Couttet, P., Soond, D.R., van Dongen, S., Grocock, R.J., Das, P.P., Miska, E.A., Vetrie, D., Okkenhaug, K., Enright, A.J., Dougan, G., Turner, M., and Bradley, A. (2007). Requirement of bic/microRNA-155 for normal immune function. Science 316, 608-611.

    CAS  PubMed  Google Scholar 

  70. Thai, T.H., Calado, D.P., Casola, S., Ansel, K.M., Xiao, C., Xue, Y., Murphy, A., Frendewey, D., Valenzuela, D., Kutok, J.L., Schmidt-Supprian, M., Rajewsky, N., Yancopoulos, G., Rao, A., and Rajewsky, K. (2007). Regulation of the germinal center response by microRNA-155. Science 316, 604-608.

    CAS  PubMed  Google Scholar 

  71. Sullivan, C.S., and Ganem, D. (2005). MicroRNAs and viral infection. Mol. Cell 20, 3-7.

    CAS  PubMed  Google Scholar 

  72. Dykxhoorn, D.M. (2007). MicroRNAs in viral replication and pathogenesis. DNA Cell Biol. 26, 239-249.

    CAS  PubMed  Google Scholar 

  73. Kumar, A. (2007). The silent defense: micro-RNA directed defense against HIV-1 replication. Retrovirology 4, 26.

    PubMed  Google Scholar 

  74. Chen, X.M., Splinter, P.L., O’hara, S.P., and Larusso, N.F. (2007). A cellular miRNA, let-7i, regulates toll-like receptor 4 expression and contributes to cholangiocyte immune responses against Cryptosporidium parvum infection. J. Biol. Chem. 282, 28929-28938.

    CAS  PubMed  Google Scholar 

  75. Lecellier, C.H., Dunoyer, P., Arar, K., Lehman-Che, J., Eyquem, S., Himber, C., et al. (2005). A cellular MicroRNA mediates antiviral defense in human cells. Science 308, 557-560.

    CAS  PubMed  Google Scholar 

  76. Triboulet, R., Mari, B., Lin, Y.L., Chable-Bessia, C., Bennasser, Y., Lebrigand, K., Cardinaud, B., Maurin, T., Barbry, P., Baillat, V., Reynes, J., Corbeau, P., Jeang, K.T., and Benkirane, M. (2007). Suppression of microRNA-silencing pathway by HIV-1 during virus replication. Science 315, 1579-1582.

    CAS  PubMed  Google Scholar 

  77. Marshall, V., Parks, T., Bagni, R., Wang, C.D., Samols, M.A., Hu, J., Wyvil, K.M., Aleman, K., Little, R.F., Yarchoan, R., Renne, R., and Whitby, D. (2007). Conservation of virally encoded microRNAs in Kaposi sarcoma - associated herpesvirus in primary effusion lymphoma cell lines and in patients with Kaposi sarcoma or multicentric Castleman disease. J. Infect. Dis. 195, 645-659.

    CAS  PubMed  Google Scholar 

  78. Stern-Ginossar, N., Elefant, N., Zimmermann, A., Wolf, D.G., Saleh, N., Biton, M., Horwitz, E., Prokocimer, Z., Prichard, M., Hahn, G., Goldman-Wohl, D., Greenfield, C., Yagel, S., Hengel, H., Altuvia, Y., Margalit, H., and Mandelboim, O. (2007). Host immune system gene targeting by a viral miRNA. Science 317, 376-381.

    CAS  PubMed  Google Scholar 

  79. Shin, K.J., Wall, E.A., Zavzavadjian, J.R., Santat, L.A., Liu, J., Hwang, J.I., Rebres, R., Roach, T., Seaman, W., Simon, M.I., and Fraser, I.D. (2006). A single lentiviral vector plat-form for microRNA-based conditional RNA interference and coordinated transgene expres-sion. Proc. Natl. Acad. Sci. USA 103, 13759-13764.

    CAS  PubMed  Google Scholar 

  80. Ji, R., Cheng, Y., Yue, J., Yang, J., Liu, X., Chen, H., Dean, D.B., and Zhang, C. (2007). MicroRNA expression signature and antisense-mediated depletion reveal an essential role of MicroRNA in vascular neointimal lesion formation. Circ. Res. 100, 1579-1588.

    CAS  PubMed  Google Scholar 

  81. Kumar, M.S., Lu, J., Mercer, K.L., Golub, T.R., and Jacks, T. (2007). Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat. Genet. 39, 673-677.

    CAS  PubMed  Google Scholar 

  82. Calin, G.A., Sevignani, C., Dumitru, C.D., Hyslop, T., Noch, E., Yendamuri, S., Shimizu, M., Rattan, S., Bullrich, F., Negrini, M., and Croce, C.M. (2004). Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc. Natl. Acad. Sci. USA 101, 2999-3004.

    CAS  PubMed  Google Scholar 

  83. Lu, J., Getz, G., Miska, E.A., Alvarez-Saavedra, E., Lamb, J., Peck, D., Sweet-Cordero, A., Ebert, B.L., Mak, R.H., Ferrando, A.A., Downing, J.R., Jacks, T., Horvitz, H.R., and Golub, T.R. (2005). MicroRNA expression profiles classify human cancers. Nature 435, 834-838.

    CAS  PubMed  Google Scholar 

  84. Murakami, Y., Yasuda, T., Saigo, K., Urashima, T., Toyoda, H., Okanoue, T., and Shimotohno, K. (2006). Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues. Oncogene 25, 2537-2545.

    CAS  PubMed  Google Scholar 

  85. Bottoni, A., Zatelli, M.C., Ferracin, M., Tagliati, F., Piccin, D., Vignali, C., Calin, G.A., Negrini, M., Croce, C.M., and Degli Uberti, E.C. (2007). Identification of differentially expressed microRNAs by microarray: a possible role for microRNA genes in pituitary adeno-mas. J. Cell Physiol. 210, 370-377.

    CAS  PubMed  Google Scholar 

  86. Lanza, G., Ferracin, M., Gafa, R., Veronese, A., Spizzo, R., Pichiorri, F., Liu, C.G., Calin, G.A., Croce, C.M., and Negrini, M. (2007). mRNA/microRNA gene expression profile in microsatellite unstable colorectal cancer. Mol. Cancer 6, 54.

    PubMed  Google Scholar 

  87. Looijenga, L.H., Gillis, A.J., Stoop, H., Hersmus, R., and Oosterhuis, J.W. (2007). Relevance of microRNAs in normal and malignant development, including human testicular germ cell tumours. Int. J. Androl. 30, 304-315.

    CAS  PubMed  Google Scholar 

  88. . Marsh, E.E., Lin, Z., Yin, P., Milad, M., Chakravarti, D., and Bulun, S.E. (2007). Differential expression of microRNA species in human uterine leiomyoma versus normal myometrium. Fertil. Steril. doi:10.1016/j.fertnstert.2007.05.004.

    Google Scholar 

  89. Muralidhar, B., Goldstein, L.D., Ng, G., Winder, D.M., Palmer, R.D., Gooding, E.L., Barbosa-Morais, N.L., Mukherjee, G., Thorne, N.P., Roberts, I., Pett, M.R., and Coleman, N. (2007). Global microRNA profiles in cervical squamous cell carcinoma depend on Drosha expression levels. J. Pathol. 212, 368-377.

    CAS  PubMed  Google Scholar 

  90. Porkka, K.P., Pfeiffer, M.J., Waltering, K.K., Vessella, R.L., Tammela, T.L., and Visakorpi, T. (2007). MicroRNA expression profiling in prostate cancer. Cancer Res. 67, 6130-6135.

    CAS  PubMed  Google Scholar 

  91. Voorhoeve, P.M., le Sage, C., Schrier, M., Gillis, A.J., Stoop, H., Nagel, R., Liu, Y.P., van Duijse, J., Drost, J., Griekspoor, A., et al. (2007). A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Adv. Exp. Med. Biol. 604, 17-46.

    PubMed  Google Scholar 

  92. Visone, R., Pallante, P., Vecchione, A., Cirombella, R., Ferracin, M., Ferraro, A., Volinia, S., Coluzzi, S., Leone, V., Borbone, E., et al. (2007). Specific microRNAs are downregulated in human thyroid anaplastic carcinomas. Oncogene 26, 7590-7595.

    CAS  PubMed  Google Scholar 

  93. Wang, T., Zhang, X., Obijuru, L., Laser, J., Aris, V., Lee, P., Mittal, K., Soteropoulos, P., and Wei, J.J. (2007). A micro-RNA signature associated with race, tumor size, and target gene activity in human uterine leiomyomas. Gene. Chromosome. Cancer 46, 336-347.

    CAS  Google Scholar 

  94. Welch, C., Chen, Y., and Stallings, R.L. (2007). MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene 26, 5017-5022.

    CAS  PubMed  Google Scholar 

  95. Negrini, M., Ferracin, M., Sabbioni, S., and Croce, C.M. (2007). MicroRNAs in human can-cer: from research to therapy. J. Cell Sci. 120, 1833-1840.

    CAS  PubMed  Google Scholar 

  96. Gauwerky, C.E., Huebner, K., Isobe, M., Nowell, P.C., and Croce, C.M. (1989). Activation of MYC in a masked t(8;17) translocation results in an aggressive B-cell leukemia. Proc. Natl. Acad. Sci. USA 86, 8867-8871.

    CAS  PubMed  Google Scholar 

  97. Lagos-Quintana, M., Rauhut, R., Yalcin, A., Meyer, J., Lendeckel, W., and Tuschl, T. (2002). Identification of tissue-specific microRNAs from mouse. Curr. Biol. 12, 735-739.

    CAS  PubMed  Google Scholar 

  98. Eis, P.S., Tam, W., Sun, L., Chadburn, A., Li, Z., Gomez, M.F., Lund, E., and Dahlberg, J.E. (2005). Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc. Natl. Acad. Sci. USA 102, 3627-3632.

    CAS  PubMed  Google Scholar 

  99. Fulci, V., Chiaretti, S., Goldoni, M., Azzalin, G., Carucci, N., Tavolaro, S., Castellano, L., Magrelli, A., Citarella, F., Messina, M., et al. (2007). Quantitative technologies establish a novel microRNA profile of chronic lymphocytic leukemia. Blood 109, 4944-4951.

    CAS  PubMed  Google Scholar 

  100. Calin, G.A., Dumitru, C.D., Shimizu, M., Bichi, R., Zupo, S., Noch, E., Aldler, H., Rattan, S., Keating, M., Rai, K., Rassenti, L., Kipps, T., Negrini, M., Bullrich, F., and Croce, C.M. (2002). Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl. Acad. Sci. USA 99, 15524-15529.

    CAS  PubMed  Google Scholar 

  101. Landais, S., Landry, S., Legault, P., and Rassart, E. (2007). Oncogenic potential of the miR-106-363 cluster and its implication in human T-cell leukemia. Cancer Res. 67, 5699-5707.

    CAS  PubMed  Google Scholar 

  102. Lum, A.M., Wang, B.B., Li, L., Channa, N., Bartha, G., and Wabl, M. (2007). Retroviral activation of the mir-106a microRNA cistron in T lymphoma. Retrovirology 4, 5.

    PubMed  Google Scholar 

  103. Hayashita, Y., Osada, H., Tatematsu, Y., Yamada, H., Yanagisawa, K., Tomida, S., Yatabe, Y., Kawahara, K., Sekido, Y., and Takahashi, T. (2005). A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res. 65, 9628-9632.

    CAS  PubMed  Google Scholar 

  104. He, L., Thomson, J.M., Hemann, M.T., Hernando-Monge, E., Mu, D., Goodson, S., Powers, S., Cordon-Cardo, C., Lowe, S.W., Hannon, G.J., and Hammond, S.M. (2005). A microRNA polycistron as a potential human oncogene. Nature 435, 828-833.

    CAS  PubMed  Google Scholar 

  105. O’Donnell, K.A., Wentzel, E.A., Zeller, K.I., Dang, C.V., and Mendell, J.T. (2005). c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435, 839-843.

    PubMed  Google Scholar 

  106. Takamizawa, J., Konishi, H., Yanagisawa, K., Tomida, S., Osada, H., Endoh, H., Harano, T., Yatabe, Y., Nagino, M., Nimura, Y., Mitsudomi, T., and Takahashi, T. (2004). Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res. 64, 3753-3756.

    CAS  PubMed  Google Scholar 

  107. Kutay, H., Bai, S., Datta, J., Motiwala, T., Pogribny, I., Frankel, W., Jacob, S.T., and Ghoshal, K. (2006). Downregulation of miR-122 in the rodent and human hepatocellular carcinomas. J. Cell Biochem. 99, 671-678.

    CAS  PubMed  Google Scholar 

  108. Gramantieri, L., Ferracin, M., Fornari, F., Veronese, A., Sabbioni, S., Liu, C.G., Calin, G.A., Giovannini, C., Ferrazzi, E., Grazi, G.L., Croce, C.M., Bolondi, L., and Negrini, M. (2007). Cyclin G1 is a target of miR-122a, a microRNA frequently down-regulated in human hepa-tocellular carcinoma. Cancer Res. 67, 6092-6099.

    CAS  PubMed  Google Scholar 

  109. Meng, F., Henson, R., Wehbe-Janek, H., Ghoshal, K., Jacob, S.T., and Patel, T. (2007). MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocel-lular cancer. Gastroenterology 133, 647-658.

    CAS  PubMed  Google Scholar 

  110. Ciafre, S.A., Galardi, S., Mangiola, A., Ferracin, M., Liu, C.G., Sabatino, G., Negrini, M., Maira, G., Croce, C.M., and Farace, M.G. (2005). Extensive modulation of a set of microR-NAs in primary glioblastoma. Biochem. Biophys. Res. Commun. 334, 1351-1358.

    CAS  PubMed  Google Scholar 

  111. Iorio, M.V., Ferracin, M., Liu, C.G., Veronese, A., Spizzo, R., Sabbioni, S., Magri, E., Pedriali, M., Fabbri, M., Campiglio, M., Menard, S., Palazzo, J.P., Rosenberg, A., Musiani, P., Volinia, S., Nenci, I., Calin, G.A., Querzoli, P., Negrini, M., and Croce, C.M.(2005). MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 65, 7065-7070.

    CAS  PubMed  Google Scholar 

  112. Michael, M.Z., O’Connor, S.M., van Holst Pellekaan, N.G., Young, G.P., and James, R.J. (2003). Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol. Cancer Res. 1, 882-891.

    CAS  PubMed  Google Scholar 

  113. Lapidot, T., Sirard, C., Vormoor, J., Murdoch, B., Hoang, T., Caceres-Cortes, J., Minden, M., Paterson, B., Caligiuri, M., and Dick, J. (1994). A cell initiating human acute myeloid leu-kaemia after transplantation into SCID mice. Nature 367, 645-648.

    CAS  PubMed  Google Scholar 

  114. Bonnet, D., and Dick, J. (1997). Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med. 3, 730-737.

    CAS  PubMed  Google Scholar 

  115. Al-Hajj, M., Wicha, M.S., Benito-Hernandez, A., Morrison, S.J., and Clarke, M.F. (2003). Prospective identification of tumorigenic breast cancer cells. Proc. Natl. Acad. Sci. USA 100, 3983-3988.

    CAS  PubMed  Google Scholar 

  116. Spradling, A., Drummond-Barbosa, D., and Kai, T. (2001). Stem cells find their niche. Nature 414, 98-104.

    CAS  PubMed  Google Scholar 

  117. Calvi, L.M., Adams, G.B., Weibrecht, K.W., Weber, J.M., Olson, D.P., Knight, M.C., Martin, R.P., Schipani, E., Divieti, P., Bringhurst, F.R., Milner, L.A., Kronenberg, H.M., and Scadden, D.T. (2003). Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425, 841-846.

    CAS  PubMed  Google Scholar 

  118. Zhang, J., Niu, C., Ye, L., Huang, H., He, X., Tong, W.G., Ross, J., Haug, J., Johnson, T., Feng, J.Q., Harris, S., Wiedemann, L.M., Mishina, Y., and Li, L. (2003). Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425, 836-841.

    CAS  PubMed  Google Scholar 

  119. Lessard, J., and Sauvageau, G. (2003). Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature 423, 255-260.

    CAS  PubMed  Google Scholar 

  120. Lu, Y., Thomson, J.M., Wang, H.Y., Hammond, S.M., and Hogan, B.L. (2007). Transgenic over-expression of the microRNA miR-17-92 cluster promotes proliferation and inhibits dif-ferentiation of lung epithelial progenitor cells. Dev. Biol. 310, 442-453.

    CAS  PubMed  Google Scholar 

  121. Woods, K., Thomson, J.M., and Hammond, S.M. (2007). Direct regulation of an oncogenic micro-RNA cluster by E2F transcription factors. J. Biol. Chem. 282, 2130-2134.

    CAS  PubMed  Google Scholar 

  122. Sylvestre, Y., De Guire, V., Querido, E., Mukhopadhyay, U.K., Bourdeau, V., Major, F., Ferbeyre, G., and Chartrand, P. (2007). An E2F/miR-20a autoregulatory feedback loop. J. Biol. Chem. 282, 2135-2143.

    CAS  PubMed  Google Scholar 

  123. Si, M.L., Zhu, S., Wu, H., Lu, Z., Wu, F., and Mo, Y.Y. (2007). miR-21-mediated tumor growth. Oncogene 26, 2799-2803.

    CAS  PubMed  Google Scholar 

  124. Galardi, S., Mercatelli, N., Giorda, E., Massalini, S., Frajese, G.V., Ciafre, S.A., and Farace, M.G. (2007). miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kip1. J. Biol. Chem. 282, 23716-23724.

    CAS  PubMed  Google Scholar 

  125. le Sage, C., Nagel, R., Egan, D.A., Schrier, M., Mesman, E., Mangiola, A., Anile, C., Maira, G., Mercatelli, N., Ciafre, S.A., Farace, M.G., and Agami, R. (2007). Regulation of the p27(Kip1) tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation. EMBO J. 26, 3699-3708.

    CAS  PubMed  Google Scholar 

  126. Johnson, C.D., Esquela-Kerscher, A., Stefani, G., Byrom, M., Kelnar, K., Ovcharenko, D., Wilson, M., Wang, X., Shelton, J., Shingara, J., Chin, L., Brown, D., and Slack, F.J. (2007). The let-7 MicroRNA represses cell proliferation pathways in human cells. Cancer Res. 67, 7713-7722.

    CAS  PubMed  Google Scholar 

  127. Johnson, S.M., Grosshans, H., Shingara, J., Byrom, M., Jarvis, R., Cheng, A., Labourier, E., Reinert, K.L., Brown, D., and Slack, F.J. (2005). RAS is regulated by the let-7 microRNA family. Cell 120, 635-647.

    CAS  PubMed  Google Scholar 

  128. Shah, Y.M., Morimura, K., Yang, Q., Tanabe, T., Takagi, M., and Gonzalez, F.J. (2007). Peroxisome proliferator-activated receptor alpha regulates a microRNA-mediated signaling cascade responsible for hepatocellular proliferation. Mol. Cell Biol. 27, 4238-4247.

    CAS  PubMed  Google Scholar 

  129. Mayr, C., Hemann, M.T., and Bartel, D.P. (2007). Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science 315, 1576-1579.

    CAS  PubMed  Google Scholar 

  130. Cimmino, A., Calin, G.A., Fabbri, M., Iorio, M.V., Ferracin, M., Shimizu, M., Wojcik, S.E., Aqeilan, R.I., Zupo, S., Dono, M., Rassenti, L., Alder, H., Volinia, S., Liu, C.G., Kipps, T.J., Negrini, M., and Croce, C.M. (2005). miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc. Natl. Acad. Sci. USA 102, 13944-13949.

    CAS  PubMed  Google Scholar 

  131. Jing, Q., Huang, S., Guth, S., Zarubin, T., Motoyama, A., Chen, J., Di Padova, F., Lin, S.C., Gram, H., and Han, J. (2005). Involvement of MicroRNA in AU-rich element-mediated mRNA instability. Cell 120, 623-634.

    CAS  PubMed  Google Scholar 

  132. Bommer, G.T., Gerin, I., Feng, Y., Kaczorowski, A.J., Kuick, R., Love, R.E., Zhai, Y., Giordano, T.J., Qin, Z.S., Moore, B.B., Macdougald, O.A., Cho, K.R., and Fearon, E.R. (2007). p53-Mediated Activation of miRNA34 candidate tumor-suppressor genes. Curr. Biol. 17, 1298-1307.

    CAS  PubMed  Google Scholar 

  133. He, L., He, X., Lim, L.P., de Stanchina, E., Xuan, Z., Liang, Y., Xue, W., Zender, L., Magnus, J., Ridzon, D., Jackson, A.L., Linsley, P.S., Chen, C., Lowe, S.W., Cleary, M.A., and Hannon, G.J. (2007). A microRNA component of the p53 tumour suppressor network. Nature 447, 1130-1134.

    CAS  PubMed  Google Scholar 

  134. Liu, T., Papagiannakopoulos, T., Puskar, K., Qi, S., Santiago, F., Clay, W., Lao, K., Lee, Y., Nelson, S.F., Kornblum, H.I., Doyle, F., Petzold, L., Shraiman, B., and Kosik, K.S. (2007). Detection of a microRNA signal in an in vivo expression set of mRNAs. PLoS ONE. 2, e804.

    PubMed  Google Scholar 

  135. Laneve, P., Di Marcotullio, L., Gioia, U., Fiori, M.E., Ferretti, E., Gulino, A., Bozzoni, I., and Caffarelli, E. (2007). The interplay between microRNAs and the neurotrophin receptor tropomyosin-related kinase C controls proliferation of human neuroblastoma cells. Proc. Natl. Acad. Sci. USA 104, 7957-7962.

    CAS  PubMed  Google Scholar 

  136. Garzon, R., Pichiorri, F., Palumbo, T., Visentini, M., Aqeilan, R., Cimmino, A., Wang, H., Sun, H., Volinia, S., Alder, H., Calin, G.A., Liu, C.G., Andreeff, M., and Croce, C.M. (2007). MicroRNA gene expression during retinoic acid-induced differentiation of human acute promyelocytic leukemia. Oncogene 26, 4148-4157.

    CAS  PubMed  Google Scholar 

  137. Gillies, J.K., and Lorimer, I.A. (2007). Regulation of p27Kip1 by miRNA 221/222 in gliob-lastoma. Cell Cycle 6, 2005-2009.

    CAS  PubMed  Google Scholar 

  138. Guo, W., Lasky, J.L.,3rd, and Wu, H. (2006). Cancer stem cells. Pediatr. Res.59, 59R-64R.

    Google Scholar 

  139. Zhang, P., Zuo, H., Ozaki, T., Nakagomi, N., and Kakudo, K. (2006). Cancer stem cell hypothesis in thyroid cancer. Pathol. Int. 56, 485-489.

    CAS  PubMed  Google Scholar 

  140. Yanaihara, N., Caplen, N., Bowman, E., Seike, M., Kumamoto, K., Yi, M., Stephens, R.M., Okamoto, A., Yokota, J., Tanaka, T., Calin, G.A., Liu, C., Croce, C.M., and Harris, C.C. (2006). miRNA signature in lung cancer diagnosis and prognosis. Cancer Cell 9, 189-198.

    CAS  PubMed  Google Scholar 

  141. Gaur, A., Jewell, D.A., Liang, Y., Ridzon, D., Moore, J.H., Chen, C., Ambros, V.R., and Israel, M.A. (2007). Characterization of microRNA expression levels and their biological correlates in human cancer cell lines. Cancer Res. 67, 2456-2468.

    CAS  PubMed  Google Scholar 

  142. Waldman, S.A., and Terzic, A. (2007). Translating MicroRNA discovery into clinical biomarkers in cancer. JAMA 297, 1923-1925.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Wu, J., Yang, Z. (2008). MicroRNAs and Regenerative Medicine. In: Ying, SY. (eds) Current Perspectives in microRNAs (miRNA). Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8533-8_9

Download citation

Publish with us

Policies and ethics