Skip to main content

MicroRNA in Muscle Development and Function

  • Chapter
Current Perspectives in microRNAs (miRNA)
  • 1383 Accesses

microRNAs (miRNAs) are a class of highly conserved small non-coding RNAs of ~-nucleotides that negatively regulate gene expression post-transcrip-tionally. The emerging field of miRNA biology has begun to unravel roles for these regulatory molecules in a range of biological functions, including cell proliferation, differentiation and development. The molecular events that regulate cardiac and skeletal muscle development, as well as in muscle-related disease processes have bee well-established at transcriptional level. In this chapter, we review the role of miRNAs in muscle biology. The expression of several miRNAs was found specifically in cardiac and skeletal muscles. Most importantly, genetic studies have demonstrated that miRNAs are required for muscle gene expression, muscle development and function. Furthermore, dysregulated miRNA expression has been correlated to certain muscle-related diseases, including cardiac hypertrophy, cardiac arrhythmias, and muscular dystrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Srivastava, D., Making or breaking the heart: from lineage determination to morphogenesis. Cell, 2006. 126(6): pp. 1037-1048.

    Article  CAS  PubMed  Google Scholar 

  2. Buckingham, M., Myogenic progenitor cells and skeletal myogenesis in vertebrates. Curr Opin Genet Dev, 2006. 16(5): pp. 525-532.

    Article  CAS  PubMed  Google Scholar 

  3. Venuti, J.M. and P. Cserjesi, Molecular embryology of skeletal myogenesis. Curr Top Dev Biol, 1996. 34: pp. 169-206.

    Article  CAS  PubMed  Google Scholar 

  4. Miano, J.M., Serum response factor: toggling between disparate programs of gene expres-sion. J Mol Cell Cardiol, 2003. 35(6): pp. 577-593.

    Article  CAS  PubMed  Google Scholar 

  5. Owens, G.K., M.S. Kumar, and B.R. Wamhoff, Molecular regulation of vascular smooth mus- cle cell differentiation in development and disease. Physiol Rev, 2004. 84(3): pp. 767-801.

    Article  CAS  PubMed  Google Scholar 

  6. Olson, E.N., A decade of discoveries in cardiac biology. Nat Med,2004.10(5): pp. 467-474.

    Article  CAS  PubMed  Google Scholar 

  7. Olson, E.N., Gene regulatory networks in the evolution and development of the heart. Science, 2006. 313(5795): pp. 1922-1927.

    Article  CAS  PubMed  Google Scholar 

  8. Harvey, R.P., et al., Homeodomain factor Nkx2-5 in heart development and disease. Cold Spring Harb Symp Quant Biol, 2002. 67: pp. 107-114.

    Article  CAS  PubMed  Google Scholar 

  9. Black, B.L. and E.N. Olson, Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins. Annu Rev Cell Dev Biol, 1998. 14: pp. 167-196.

    Article  CAS  PubMed  Google Scholar 

  10. McKinsey, T.A., C.L. Zhang, and E.N. Olson, MEF2: a calcium-dependent regulator of cell division, differentiation and death. Trends Biochem Sci, 2002. 27(1): pp. 40-47.

    Article  CAS  PubMed  Google Scholar 

  11. Holtzinger, A. and T. Evans, Gata4 regulates the formation of multiple organs. Development, 2005. 132 (17): pp. 4005-4014.

    Article  CAS  PubMed  Google Scholar 

  12. Bisping, E., et al., Gata4 is required for maintenance of postnatal cardiac function and pro-tection from pressure overload-induced heart failure. Proc Natl Acad Sci USA, 2006. 103 (39): pp. 14471-14476.

    Article  CAS  PubMed  Google Scholar 

  13. Wang, D., et al., Regulation of cardiac growth and development by SRF and its cofactors. Cold Spring Harb Symp Quant Biol, 2002. 67: pp. 97-105.

    Article  CAS  PubMed  Google Scholar 

  14. Miano, J.M., et al., Restricted inactivation of serum response factor to the cardiovascular system. Proc Natl Acad Sci USA, 2004. 101(49): pp. 17132-17137.

    Article  CAS  PubMed  Google Scholar 

  15. Li, S., et al., Requirement for serum response factor for skeletal muscle growth and maturation revealed by tissue-specific gene deletion in mice. Proc Natl Acad Sci USA, 2005. 102(4): pp. 1082-1087.

    Article  CAS  PubMed  Google Scholar 

  16. Parlakian, A., et al., Targeted inactivation of serum response factor in the developing heart results in myocardial defects and embryonic lethality. Mol Cell Biol, 2004. 24(12): pp. 5281-5289.

    Article  CAS  PubMed  Google Scholar 

  17. Wang, D., et al., Activation of cardiac gene expression by myocardin, a transcriptional cofactor for serum response factor. Cell, 2001. 105(7): pp. 851-862.

    Article  CAS  PubMed  Google Scholar 

  18. Wang, Z., et al., Myocardin and ternary complex factors compete for SRF to control smooth muscle gene expression. Nature, 2004. 428(6979): pp. 185-189.

    Article  CAS  PubMed  Google Scholar 

  19. Berkes, C.A. and S.J. Tapscott, MyoD and the transcriptional control of myogenesis. Semin Cell Dev Biol, 2005. 16(4-5): pp. 585-595.

    Article  CAS  PubMed  Google Scholar 

  20. Bassel-Duby, R. and E.N. Olson, Signaling pathways in skeletal muscle remodeling. Annu Rev Biochem, 2006. 75: pp. 19-37.

    Article  CAS  PubMed  Google Scholar 

  21. Molkentin, J.D., et al., Cooperative activation of muscle gene expression by MEF2 and myo-genic bHLH proteins. Cell, 1995. 83(7): pp. 1125-1136.

    Article  CAS  PubMed  Google Scholar 

  22. Bartel, D.P., MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004. 116(2): pp. 281-297.

    Article  CAS  PubMed  Google Scholar 

  23. Griffiths-Jones, S., et al., miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res, 2006. 34(Database issue): pp. D140-D144.

    Article  CAS  PubMed  Google Scholar 

  24. Doench, J.G. and P.A. Sharp, Specificity of microRNA target selection in translational repres-sion. Genes Dev, 2004. 18(5): pp. 504-511.

    Article  CAS  PubMed  Google Scholar 

  25. Pillai, R.S., C.G. Artus, and W. Filipowicz, Tethering of human ago proteins to mRNA mimics the miRNA-mediated repression of protein synthesis. RNA, 2004. 10(10): pp. 1518-1525.

    Article  CAS  PubMed  Google Scholar 

  26. Bagga, S., et al., Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell, 2005. 122(4): pp. 553-563.

    Article  CAS  PubMed  Google Scholar 

  27. Griffiths-Jones, S., The microRNA registry. Nucleic Acids Res, 2004. 32(Database issue): pp. D109-D111.

    Article  CAS  PubMed  Google Scholar 

  28. Chen, J.F., et al., The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet, 2006. 38(2): pp. 228-233.

    Article  CAS  PubMed  Google Scholar 

  29. Rao, P.K., et al., Myogenic factors that regulate expression of muscle-specific microRNAs. Proc Natl Acad Sci USA, 2006. 103(23): pp. 8721-8726.

    Article  CAS  PubMed  Google Scholar 

  30. Zhao, Y., E. Samal, and D. Srivastava, Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature, 2005. 436(7048): pp. 214-220.

    Article  CAS  PubMed  Google Scholar 

  31. Sokol, N.S. and V. Ambros, Mesodermally expressed Drosophila microRNA-1 is regulated by twist and is required in muscles during larval growth. Genes Dev, 2005. 19 (19): pp. 2343-2354.

    Article  CAS  PubMed  Google Scholar 

  32. Rosenberg, M.I., et al., MyoD inhibits Fstl1 and Utrn expression by inducing transcription of miR-206. J Cell Biol, 2006. 175(1): pp. 77-85.

    Article  CAS  PubMed  Google Scholar 

  33. van Rooij, E., et al., Control of stress-dependent cardiac growth and gene expression by a microRNA. Science, 2007. 316(5824): pp. 575-579.

    Article  CAS  PubMed  Google Scholar 

  34. Baskerville, S. and D.P. Bartel, Microarray profiling of microRNAs reveals frequent coexpres- sion with neighboring miRNAs and host genes. RNA, 2005. 11(3): pp. 241-247.

    Article  CAS  PubMed  Google Scholar 

  35. Kim, Y.K. and V.N. Kim, Processing of intronic microRNAs. Embo J,2007.26(3): pp. 775-783.

    Article  CAS  PubMed  Google Scholar 

  36. Cheng, Y., et al., MicroRNAs are aberrantly expressed in hypertrophic heart: do they play a role in cardiac hypertrophy? Am J Pathol, 2007. 170(6): pp. 1831-1840.

    Article  CAS  PubMed  Google Scholar 

  37. Tatsuguchi, M., et al., Expression of microRNAs is dynamically regulated during cardiomyo-cyte hypertrophy. J Mol Cell Cardiol, 2007. 42(6): pp. 1137-1141.

    Article  CAS  PubMed  Google Scholar 

  38. van Rooij, E., et al., A signature pattern of stress-responsive microRNAs that can evoke car- diac hypertrophy and heart failure. Proc Natl Acad Sci USA,2006.103(48): pp. 18255-18260.

    Article  CAS  PubMed  Google Scholar 

  39. Yang, B., et al., The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat Med, 2007. 13(4): pp. 486-491.

    Article  CAS  PubMed  Google Scholar 

  40. Ikeda, S., et al., Altered microRNA expression in human heart disease. Physiol Genomics, 2007. 31: pp. 367-373.

    Article  CAS  PubMed  Google Scholar 

  41. Thum, T., et al., MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure. Circulation, 2007. 116(3): pp. 258-267.

    Article  CAS  PubMed  Google Scholar 

  42. Eisenberg, I., et al., Distinctive patterns of microRNA expression in primary muscular disor-ders. Proc Natl Acad Sci USA, 2007. 104(43): pp. 17016-17021.

    Article  CAS  PubMed  Google Scholar 

  43. Ambros, V., MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing. Cell, 2003. 113(6): pp. 673-676.

    Article  CAS  PubMed  Google Scholar 

  44. Wienholds, E., et al., The microRNA-producing enzyme Dicer1 is essential for zebrafish development. Nat Genet, 2003. 35(3): pp. 217-218.

    Article  CAS  PubMed  Google Scholar 

  45. Bernstein, E., et al., Dicer is essential for mouse development. Nat Genet, 2003. 35(3): pp. 215-217.

    Article  CAS  PubMed  Google Scholar 

  46. Harfe, B.D., et al., The RNaseIII enzyme Dicer is required for morphogenesis but not pattern-ing of the vertebrate limb. Proc Natl Acad Sci USA, 2005. 102(31): pp. 10898-10903.

    Article  CAS  PubMed  Google Scholar 

  47. Yi, R., et al., Morphogenesis in skin is governed by discrete sets of differentially expressed microRNAs. Nat Genet, 2006. 38(3): pp. 356-362.

    Article  CAS  PubMed  Google Scholar 

  48. Giraldez, A.J., et al., MicroRNAs regulate brain morphogenesis in zebrafish. Science, 2005. 308(5723): pp. 833-838.

    Article  CAS  PubMed  Google Scholar 

  49. Andl, T., et al., The miRNA-processing enzyme dicer is essential for the morphogenesis and maintenance of hair follicles. Curr Biol, 2006. 16(10): pp. 1041-1049.

    Article  CAS  PubMed  Google Scholar 

  50. Harris, K.S., et al., Dicer function is essential for lung epithelium morphogenesis. Proc Natl Acad Sci USA, 2006. 103(7): pp. 2208-2213.

    Article  CAS  PubMed  Google Scholar 

  51. Zhao, Y., et al., Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell, 2007. 129(2): pp. 303-317.

    Article  CAS  PubMed  Google Scholar 

  52. Kwon, C., et al., MicroRNA1 influences cardiac differentiation in Drosophila and regulates notch signaling. Proc Natl Acad Sci USA, 2005. 102(52): pp. 18986-18991.

    Article  CAS  PubMed  Google Scholar 

  53. Srivastava, D., et al., Regulation of cardiac mesodermal and neural crest development by the bHLH transcription factor, dHAND. Nat Genet, 1997. 16(2): pp. 154-160.

    Article  CAS  PubMed  Google Scholar 

  54. Xu, C., et al., The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes. J Cell Sci, 2007. 120 (Pt 17): pp. 3045-3052.

    Article  CAS  PubMed  Google Scholar 

  55. Wang, D.Z., Micro or mega: how important are MicroRNAs in muscle? Cell Cycle, 2006. 5(10): pp. 1015-1016.

    CAS  PubMed  Google Scholar 

  56. Yaffe, D. and O. Saxel, Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature, 1977. 270(5639): pp. 725-727.

    Article  CAS  PubMed  Google Scholar 

  57. Kim, H.K., et al., Muscle-specific microRNA miR-206 promotes muscle differentiation. J Cell Biol, 2006. 174(5): pp. 677-687.

    Article  CAS  PubMed  Google Scholar 

  58. McCarthy, J.J. and K.A. Esser, MicroRNA-1 and microRNA-133a expression are decreased during skeletal muscle hypertrophy. J Appl Physiol, 2007. 102(1): pp. 306-313.

    Article  CAS  PubMed  Google Scholar 

  59. Lu, J., et al., Regulation of skeletal myogenesis by association of the MEF2 transcription fac-tor with class II histone deacetylases. Mol Cell, 2000. 6(2): pp. 233-244.

    Article  CAS  PubMed  Google Scholar 

  60. Lu, J., et al., Signal-dependent activation of the MEF2 transcription factor by dissociation from histone deacetylases. Proc Natl Acad Sci USA, 2000. 97(8): pp. 4070-4075.

    Article  CAS  PubMed  Google Scholar 

  61. Anderson, C., H. Catoe, and R. Werner, MIR-206 regulates connexin43 expression during skeletal muscle development. Nucleic Acids Res, 2006. 34(20): pp. 5863-5871.

    Article  CAS  PubMed  Google Scholar 

  62. Proulx, A., P.A. Merrifield, and C.C. Naus, Blocking gap junctional intercellular communica-tion in myoblasts inhibits myogenin and MRF4 expression. Dev Genet, 1997. 20 (2): pp. 133-144.

    Article  CAS  PubMed  Google Scholar 

  63. McCarthy, J.J., K.A. Esser, and F.H. Andrade, MicroRNA-206 is over-expressed in the dia-phragm but not the hindlimb muscle of mdx mouse. Am J Physiol Cell Physiol, 2007. 239(1): pp. 451-457.

    Article  Google Scholar 

  64. Flynt, A.S., et al., Zebrafish miR-214 modulates hedgehog signaling to specify muscle cell fate. Nat Genet, 2007. 39(2): pp. 259-263.

    Article  CAS  PubMed  Google Scholar 

  65. Wolff, C., S. Roy, and P.W. Ingham, Multiple muscle cell identities induced by distinct levels and timing of hedgehog activity in the zebrafish embryo. Curr Biol,2003.13(14): pp. 1169-1181.

    Article  CAS  PubMed  Google Scholar 

  66. Naguibneva, I., et al., The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation. Nat Cell Biol, 2006. 8(3): pp. 278-284.

    Article  CAS  PubMed  Google Scholar 

  67. Chen, C.Z., et al., MicroRNAs modulate hematopoietic lineage differentiation. Science, 2004. 303 (5654): pp. 83-86.

    Article  CAS  PubMed  Google Scholar 

  68. Clop, A., et al., A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat Genet, 2006. 38(7): pp. 813-818.

    Article  CAS  PubMed  Google Scholar 

  69. Frey, N. and E.N. Olson, Cardiac hypertrophy: the good, the bad, and the ugly. Annu Rev Physiol, 2003. 65: pp. 45-79.

    Article  CAS  PubMed  Google Scholar 

  70. Heineke, J. and J.D. Molkentin, Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol, 2006. 7(8): pp. 589-600.

    Article  CAS  PubMed  Google Scholar 

  71. Amack, J.D. and M.S. Mahadevan, Myogenic defects in myotonic dystrophy. Dev Biol, 2004. 265(2): pp. 294-301.

    Article  CAS  PubMed  Google Scholar 

  72. Care, A., et al., MicroRNA-133 controls cardiac hypertrophy. Nat Med,2007.13(5): pp. 613-618.

    Article  CAS  PubMed  Google Scholar 

  73. Sayed, D., et al., MicroRNAs play an essential role in the development of cardiac hypertrophy. Circ Res, 2007. 100(3): pp. 416-424.

    Article  CAS  PubMed  Google Scholar 

  74. Chan, J.A., A.M. Krichevsky, and K.S. Kosik, MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res, 2005. 65(14): pp. 6029-6033.

    Article  CAS  PubMed  Google Scholar 

  75. Cheng, A.M., et al., Antisense inhibition of human miRNAs and indications for an involve- ment of miRNA in cell growth and apoptosis. Nucleic Acids Res,2005.33(4): pp. 1290-1297.

    Article  CAS  PubMed  Google Scholar 

  76. Si, M.L., et al., miR-21-mediated tumor growth. Oncogene, 2006. 26(19): pp. 2799-2803.

    Article  PubMed  Google Scholar 

  77. Lewis, B.P., C.B. Burge, and D.P. Bartel, Conserved seed pairing, often flanked by adenos-ines, indicates that thousands of human genes are microRNA targets. Cell, 2005. 120(1): pp. 15-20.

    Article  CAS  PubMed  Google Scholar 

  78. Ji, R., et al., MicroRNA expression signature and antisense-mediated depletion reveal an essential role of MicroRNA in vascular neointimal lesion formation. Circ Res, 2007. 100(11): pp. 1579-1588.

    Article  CAS  PubMed  Google Scholar 

  79. Politz, J.C., F. Zhang, and T. Pederson, MicroRNA-206 colocalizes with ribosome-rich regions in both the nucleolus and cytoplasm of rat myogenic cells. Proc Natl Acad Sci USA, 2006. 103 (50): pp. 18957-18962.

    Article  CAS  PubMed  Google Scholar 

  80. Lagos-Quintana, M., et al., Identification of tissue-specific microRNAs from mouse. Curr Biol, 2002. 12(9): pp. 735-739.

    Article  CAS  PubMed  Google Scholar 

  81. Boutz, P.L., et al., MicroRNAs regulate the expression of the alternative splicing factor nPTB during muscle development. Genes Dev, 2007. 21(1): pp. 71-84.

    Article  CAS  PubMed  Google Scholar 

  82. Meng, F., et al., MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology, 2007. 133(2): pp. 647-658.

    Article  CAS  PubMed  Google Scholar 

  83. Zhu, S., et al., MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol Chem, 2007. 282(19): pp. 14328-14336.

    Article  CAS  PubMed  Google Scholar 

  84. Xiao, J., et al., MicroRNA miR-133 represses HERG K + channel expression contributing to QT prolongation in diabetic hearts. J Biol Chem, 2007. 282(17): pp. 12363-12367.

    Article  CAS  PubMed  Google Scholar 

  85. Lagos-Quintana, M., et al., New microRNAs from mouse and human. RNA, 2003. 9(2): pp. 175-179.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Deng, Z., Wang, DZ. (2008). MicroRNA in Muscle Development and Function. In: Ying, SY. (eds) Current Perspectives in microRNAs (miRNA). Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8533-8_8

Download citation

Publish with us

Policies and ethics