Skip to main content

Schizophrenia is a common disorder, affecting about 1% of the general population. The diagnosis of schizophrenia requires the presence of psychosis, including hallucinations, delusional beliefs, and/or disorganization of thought processes or behavior. Psychotic symptoms typically fluctuate over time in response to medication, stressful life events, marijuana use, or unknown causes. Impairments of other aspects of brain function, including cognition (memory skills, attentiveness, and ability to manipulate and organize complex information) are stable core features of the illness. In addition patients often experience deficits in social cognition, emotional responsiveness, and motivation. These symptoms usually result in significant disability, and schizophrenia ranks among the top ten causes of disability worldwide [67].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abelson, J. F., K. Y. Kwan, et al. (2005). “Sequence variants in SLITRK1 are associated with Tourette’s syndrome.” Science 310(5746): 317-20.

    Article  CAS  PubMed  Google Scholar 

  2. Arinami, T., T. Ohtsuki, et al. (2001). “Screening for 22q11 deletions in a schizophrenia popu-lation.” Schizophr Res 52(3): 167-70.

    Article  CAS  PubMed  Google Scholar 

  3. Arion, D., T. Unger, et al. (2007). “Molecular evidence for increased expression of genes related to immune and chaperone function in the prefrontal cortex in schizophrenia.” Biol Psychiatr 62(7): 711-21.

    Article  CAS  Google Scholar 

  4. Arnold, S. E., V. M. Lee, et al. (1991). “Abnormal expression of two microtubule-associated proteins (MAP2 and MAP5) in specific subfields of the hippocampal formation in schizophre-nia.” Proc Natl Acad Sci USA 88(23): 10850-4.

    Article  CAS  PubMed  Google Scholar 

  5. Arnold, S. E., K. Talbot, et al. (2005). “Neurodevelopment, neuroplasticity, and new genes for schizophrenia.” Prog Brain Res 147: 319-45.

    Article  CAS  PubMed  Google Scholar 

  6. Ashraf, S. I. and S. Kunes (2006). “A trace of silence: memory and microRNA at the synapse.” Curr Opin Neurobiol 16(5): 535-9.

    Article  CAS  PubMed  Google Scholar 

  7. Ashraf, S. I., A. L. McLoon, et al. (2006). “Synaptic protein synthesis associated with mem-ory is regulated by the RISC pathway in Drosophila.” Cell 124(1): 191-205.

    Article  CAS  PubMed  Google Scholar 

  8. Badner, J. A. and E. S. Gershon (2002). “Meta-analysis of whole-genome linkage scans of bipolar disorder and schizophrenia.” Mol Psychiatr 7(4): 405-11.

    Article  CAS  Google Scholar 

  9. Baker, K. D. and D. H. Skuse (2005). “Adolescents and young adults with 22q11 deletion syndrome: psychopathology in an at-risk group.” Br J Psychiatr 186: 115-20.

    Article  Google Scholar 

  10. Barbee, S. A., P. S. Estes, et al. (2006). “Staufen- and FMRP-containing neuronal RNPs are structurally and functionally related to somatic P bodies.” Neuron 52(6): 997-1009.

    Article  CAS  PubMed  Google Scholar 

  11. Bassett, A. S., E. W. Chow, et al. (2003). “The schizophrenia phenotype in 22q11 deletion syndrome.” Am J Psychiatr 160(9): 1580-6.

    Article  PubMed  Google Scholar 

  12. Bassett, A. S., E. W. Chow, et al. (2005). “Clinical features of 78 adults with 22q11 deletion syndrome.” Am J Med Genet A 138(4): 307-13.

    PubMed  Google Scholar 

  13. Bellon, A. (2007). “New genes associated with schizophrenia in neurite formation: a review of cell culture experiments.” Mol Psychiatr 12(9): 882.

    Article  CAS  Google Scholar 

  14. Bernstein, H. G., K. H. Braunewell, et al. (2002). “Hippocampal expression of the calcium sensor protein visinin-like protein-1 in schizophrenia.” Neuroreport 13(4): 393-6.

    Article  CAS  PubMed  Google Scholar 

  15. Beveridge, N. J., P. A. Tooney, et al. (2008). “Dysregulation of miRNA 181b in the temporal cortex in schizophrenia.” Hum Mol Genet 17(8): 1156-68.

    Article  CAS  PubMed  Google Scholar 

  16. Black, J. E., I. M. Kodish, et al. (2004). “Pathology of layer V pyramidal neurons in the pre-frontal cortex of patients with schizophrenia.” Am J Psychiatr 161(4): 742-4.

    Article  PubMed  Google Scholar 

  17. Blitzer, R. D., R. Iyengar, E. M. Landau. (2005). Postsynaptic signaling networks: cellular cogwheels underlying long-term plasticity. Biol Psychiatry 57(2): 113-9.

    Article  CAS  PubMed  Google Scholar 

  18. Bray, N. J., P. R. Buckland, et al. (2003). “A haplotype implicated in schizophrenia susceptibility is associated with reduced COMT expression in human brain.” Am J Hum Genet 73(1): 152-61.

    Article  CAS  PubMed  Google Scholar 

  19. Brown, A. S. (2006). “Prenatal infection as a risk factor for schizophrenia.” Schizophr Bull 32 (2): 200-2.

    Article  PubMed  Google Scholar 

  20. Brown, A. S., J. Hooton, et al. (2004). “Elevated maternal interleukin-8 levels and risk of schizophrenia in adult offspring.” Am J Psychiatr 161(5): 889-95.

    Article  PubMed  Google Scholar 

  21. Buka, S. L., M. T. Tsuang, et al. (2001). “Maternal cytokine levels during pregnancy and adult psychosis.” Brain Behav Immun 15(4): 411-20.

    Article  CAS  PubMed  Google Scholar 

  22. Burmistrova, O. A., A. Y. Goltsov, et al. (2007). “MicroRNA in schizophrenia: genetic and expression analysis of miR-130b (22q11).” Biochemistry (Mosc) 72(5): 578-82.

    Article  CAS  Google Scholar 

  23. Chang, S., R. J. Johnston, Jr., et al. (2004). “MicroRNAs act sequentially and asymmetrically to control chemosensory laterality in the nematode.” Nature 430(7001): 785-9.

    Article  CAS  PubMed  Google Scholar 

  24. Choi, P. S., L. Zakhary, et al. (2008). “Members of the miRNA-200 Family Regulate Olfactory Neurogenesis.” Neuron 57(1): 41-55.

    Article  CAS  PubMed  Google Scholar 

  25. Compton, M. T., A. M. Bollini, et al. (2007). “Neurological soft signs and minor physical anomalies in patients with schizophrenia and related disorders, their first-degree biological relatives, and non-psychiatric controls.” Schizophr Res 94(1-3): 64-73.

    Article  PubMed  Google Scholar 

  26. Conaco, C., S. Otto, et al. (2006). “Reciprocal actions of REST and a microRNA promote neuronal identity.” Proc Natl Acad Sci USA 103(7): 2422-7.

    Article  CAS  PubMed  Google Scholar 

  27. Debbane, M., B. Glaser, et al. (2006). “Psychotic symptoms in children and adolescents with 22q11.2 deletion syndrome: Neuropsychological and behavioral implications.” Schizophr Res 84 (2-3): 187-93.

    Article  PubMed  Google Scholar 

  28. Deng, H., W. D. Le, et al. (2006). “Examination of the SLITRK1 gene in Caucasian patients with Tourette syndrome.” Acta Neurol Scand 114(6): 400-2.

    Article  CAS  PubMed  Google Scholar 

  29. Dracheva, S., S. L. Elhakem, et al. (2004). “GAD67 and GAD65 mRNA and protein expres-sion in cerebrocortical regions of elderly patients with schizophrenia.” J Neurosci Res 76(4): 581-92.

    Article  CAS  PubMed  Google Scholar 

  30. Garey, L. J., W. Y. Ong, et al. (1998). “Reduced dendritic spine density on cerebral cortical pyramidal neurons in schizophrenia.” J Neurol Neurosurg Psychiatr 65(4): 446-53.

    Article  CAS  PubMed  Google Scholar 

  31. Gilmore, J. H. and L. F. Jarskog (1997). “Exposure to infection and brain development: cytokines in the pathogenesis of schizophrenia.” Schizophr Res 24(3): 365-7.

    Article  CAS  PubMed  Google Scholar 

  32. Glantz, L. A. and D. A. Lewis (2000). “Decreased dendritic spine density on prefrontal corti-cal pyramidal neurons in schizophrenia.” Arch Gen Psychiatr 57(1): 65-73.

    Article  CAS  PubMed  Google Scholar 

  33. Handoko, H. Y., D. R. Nyholt, et al. (2005). “Separate and interacting effects within the cate-chol-O-methyltransferase (COMT) are associated with schizophrenia.” Mol Psychiatr 10(6): 589-97.

    Article  CAS  Google Scholar 

  34. Hansen, T., L. Olsen, et al. (2007). “Brain expressed microRNAs implicated in schizophrenia etiology.” PLoS ONE 2(9): e873.

    Article  PubMed  CAS  Google Scholar 

  35. Hashimoto, T., D. Arion, et al. (2007). “Alterations in GABA-related transcriptome in the dorsolateral prefrontal cortex of subjects with schizophrenia.” Mol Psychiatr 13(2): 147-61.

    Article  CAS  Google Scholar 

  36. Horowitz, A., S. Shifman, et al. (2005). “A survey of the 22q11 microdeletion in a large cohort of schizophrenia patients.” Schizophr Res 73(2-3): 263-7.

    Article  PubMed  Google Scholar 

  37. Kamiya, A., T. Tomoda, et al. (2006). “DISC1-NDEL1/NUDEL protein interaction, an essen-tial component for neurite outgrowth, is modulated by genetic variations of DISC1.” Hum Mol Genet 15(22): 3313-23.

    Article  CAS  PubMed  Google Scholar 

  38. Kapsimali, M., W. P. Kloosterman, et al. (2007). “MicroRNAs show a wide diversity of expression profiles in the developing and mature central nervous system.” Genome Biol 8(8): R173.

    Article  PubMed  CAS  Google Scholar 

  39. Karayiorgou, M., M. A. Morris, et al. (1995). “Schizophrenia susceptibility associated with interstitial deletions of chromosome 22q11.” Proc Natl Acad Sci USA 92(17): 7612-6.

    Article  CAS  PubMed  Google Scholar 

  40. Keen-Kim, D., C. A. Mathews, et al. (2006). “Overrepresentation of rare variants in a specific ethnic group may confuse interpretation of association analyses.” Hum Mol Genet 15(22): 3324-8.

    Article  CAS  PubMed  Google Scholar 

  41. Kim, J., K. Inoue, et al. (2007). “A MicroRNA feedback circuit in midbrain dopamine neu-rons.” Science 317(5842): 1220-4.

    Article  CAS  PubMed  Google Scholar 

  42. Kolluri, N., Z. Sun, et al. (2005). “Lamina-specific reductions in dendritic spine density in the prefrontal cortex of subjects with schizophrenia.” Am J Psychiatr 162(6): 1200-2.

    Article  PubMed  Google Scholar 

  43. Krichevsky, A. M., K. C. Sonntag, et al. (2006). “Specific microRNAs modulate embryonic stem cell-derived neurogenesis.” Stem Cells 24(4): 857-64.

    Article  CAS  PubMed  Google Scholar 

  44. Kye, M. J., T. Liu, et al. (2007). “Somatodendritic microRNAs identified by laser capture and multiplex RT-PCR.” RNA 13(8): 1224-34.

    Article  CAS  PubMed  Google Scholar 

  45. Lang, U. E., I. Puls, et al. (2007). “Molecular mechanisms of schizophrenia.” Cell Physiol Biochem 20(6): 687-702.

    Article  CAS  PubMed  Google Scholar 

  46. Law, A. J., C. S. Weickert, et al. (2004). “Reduced spinophilin but not microtubule-associated protein 2 expression in the hippocampal formation in schizophrenia and mood disorders: molecular evidence for a pathology of dendritic spines.” Am J Psychiatr 161(10): 1848-55.

    Article  PubMed  Google Scholar 

  47. Lewandowski, K. E., V. Shashi, et al. (2007). “Schizophrenic-like neurocognitive deficits in children and adolescents with 22q11 deletion syndrome.” Am J Med Genet B Neuropsychiatr Genet 144(1): 27-36.

    Google Scholar 

  48. Lewis, C. M., D. F. Levinson, et al. (2003). “Genome scan meta-analysis of schizophrenia and bipolar disorder, part II: Schizophrenia.” Am J Hum Genet 73(1): 34-48.

    Article  CAS  PubMed  Google Scholar 

  49. Li, B., R. S. Woo, et al. (2007). “The neuregulin-1 receptor erbB4 controls glutamatergic syn-apse maturation and plasticity.” Neuron 54(4): 583-97.

    Article  CAS  PubMed  Google Scholar 

  50. Li, X. and R. W. Carthew (2005). “A microRNA mediates EGF receptor signaling and pro-motes photoreceptor differentiation in the Drosophila eye.” Cell 123(7): 1267-77.

    Article  CAS  PubMed  Google Scholar 

  51. Lugli G., J. Larson, M. E. Martone, Y. Jones, N. R. Smalheiser. (2005). Dicer and eIF2c are enriched at postsynaptic densities in adult mouse brain and are modified by neuronal activity in a calpain-dependent manner. J Neurochem 94(4): 896-905.

    Article  CAS  PubMed  Google Scholar 

  52. Makeyev, E. V., J. Zhang, et al. (2007). “The MicroRNA miR-124 promotes neuronal differen-tiation by triggering brain-specific alternative pre-mRNA splicing.” Mol Cell 27(3): 435-48.

    Article  CAS  PubMed  Google Scholar 

  53. Murphy, K. C., L. A. Jones, et al. (1999). “High rates of schizophrenia in adults with velo-cardio-facial syndrome.” Arch Gen Psychiatr 56(10): 940-5.

    Article  CAS  PubMed  Google Scholar 

  54. Niemi L. T., J. M. Suvisaari, A. Tuulio-Henriksson, J. K. Lonnqvist (2003). Childhood developmental abnormalities in schizophrenia: evidence from high-risk studies. Schizophr Res 60(2-3): 239-58.

    Article  PubMed  Google Scholar 

  55. Passafaro, M., T. Nakagawa, et al. (2003). “Induction of dendritic spines by an extracellular domain of AMPA receptor subunit GluR2.” Nature 424(6949): 677-81.

    Article  CAS  PubMed  Google Scholar 

  56. Pavesi, G., P. Mereghetti, et al. (2004). “Weeder web: discovery of transcription factor binding sites in a set of sequences from co-regulated genes.” Nucleic Acids Res 32: W199-203.

    Article  CAS  PubMed  Google Scholar 

  57. Perkins, D. O., C. Jeffries, et al. (2005). “Expanding the ‘central dogma’: the regulatory role of nonprotein coding genes and implications for the genetic liability to schizophrenia.” Mol Psychiatr 10(1): 69-78.

    Article  CAS  Google Scholar 

  58. Perkins, D. O., C. D. Jeffries, et al. (2007). “microRNA expression in the prefrontal cortex of individuals with schizophrenia and schizoaffective disorder.” Genome Biol 8(2): R27.

    Article  PubMed  CAS  Google Scholar 

  59. Prabakaran, S., J. E. Swatton, et al. (2004). “Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress.” Mol Psychiatr 9(7): 684-97, 643.

    Article  CAS  Google Scholar 

  60. Rapoport, J. L., A. M. Addington, et al. (2005). “The neurodevelopmental model of schizo-phrenia: update 2005.” Mol Psychiatr 10(5): 434-49.

    Article  CAS  Google Scholar 

  61. Roberts, R. C., R. Conley, et al. (1996). “Reduced striatal spine size in schizophrenia: a post-mortem ultrastructural study.” Neuroreport 7(6): 1214-8.

    Article  CAS  PubMed  Google Scholar 

  62. Roberts, R. C., J. K. Roche, et al. (2005). “Synaptic differences in the patch matrix compart-ments of subjects with schizophrenia: a postmortem ultrastructural study of the striatum.” Neurobiol Dis 20(2): 324-35.

    Article  CAS  PubMed  Google Scholar 

  63. Roberts, R. C., J. K. Roche, et al. (2005). “Synaptic differences in the postmortem striatum of subjects with schizophrenia: a stereological ultrastructural analysis.” Synapse 56(4): 185-97.

    Article  CAS  PubMed  Google Scholar 

  64. Rogaev, E. I. (2005). “Small RNAs in human brain development and disorders.” Biochemistry (Mosc) 70(12): 1404-7.

    Article  CAS  Google Scholar 

  65. Rosoklija, G., G. Toomayan, et al. (2000). “Structural abnormalities of subicular dendrites in subjects with schizophrenia and mood disorders: preliminary findings.” Arch Gen Psychiatr 57 (4): 349-56.

    Article  CAS  PubMed  Google Scholar 

  66. Ross, C. A., R. L. Margolis, et al. (2006). “Neurobiology of schizophrenia.” Neuron 52(1): 139-53.

    Article  CAS  PubMed  Google Scholar 

  67. Rossler, W., H. J. Salize, et al. (2005). “Size of burden of schizophrenia and psychotic disor-ders.” Eur Neuropsychopharmacol 15(4): 399-409.

    Article  PubMed  CAS  Google Scholar 

  68. Schratt, G. M., F. Tuebing, et al. (2006). “A brain-specific microRNA regulates dendritic spine development.” Nature 439(7074): 283-9.

    Article  CAS  PubMed  Google Scholar 

  69. Selemon, L. D. (2004). “Increased cortical neuronal density in schizophrenia.” Am J Psychiatr 161(9): 1564.

    Article  PubMed  Google Scholar 

  70. Selemon, L. D., J. Mrzljak, et al. (2003). “Regional specificity in the neuropathologic sub- strates of schizophrenia: a morphometric analysis of Broca’s area 44 and area 9.” Arch Gen Psychiatr 60(1): 69-77.

    PubMed  Google Scholar 

  71. Sethupathy, P., M. Megraw, et al. (2006). “A guide through present computational approaches for the identification of mammalian microRNA targets.” Nat Methods 3(11): 881-6.

    Article  CAS  PubMed  Google Scholar 

  72. Shifman, S., M. Bronstein, et al. (2002). “A highly significant association between a COMT haplotype and schizophrenia.” Am J Hum Genet 71(6): 1296-302.

    Article  CAS  PubMed  Google Scholar 

  73. . Stark K. L., B. Xu, A. Bagchi, W. S. Lai, H. Liu, R. Hsu, X. Wan, P. Pavlidis, A. A. Mills, M. Karayiorgou, and J. A. Gagos (2008). Altered brain microRNA biogenesis contributes to phenotypic deficits in a 22q11-deletion mouse model. Nat Genet [epub ahead of print].

    Google Scholar 

  74. Steen, R. G., C. Mull, et al. (2006). “Brain volume in first-episode schizophrenia: systematic review and meta-analysis of magnetic resonance imaging studies.” Br J Psychiatr 188: 510-8.

    Article  Google Scholar 

  75. Stephan, K. E., T. Baldeweg, et al. (2006). “Synaptic plasticity and dysconnection in schizo- phrenia.” Biol Psychiatr 59(10): 929-39.

    Article  CAS  Google Scholar 

  76. Thomson, J. M., M. Newman, et al. (2006). “Extensive post-transcriptional regulation of microRNAs and its implications for cancer.” Genes Dev 20(16): 2202-7.

    Article  CAS  PubMed  Google Scholar 

  77. van Haren, N. E., H. E. Hulshoff Pol, et al. (2007). “Focal gray matter changes in schizophre- nia across the course of the illness: a 5-year follow-up study.” Neuropsychopharmacology 32 (10): 2057-66.

    Article  PubMed  Google Scholar 

  78. Vawter, M. P., M. E. Atz, et al. (2006). “Genome scans and gene expression microarrays con- verge to identify gene regulatory loci relevant in schizophrenia.” Hum Genet 119(5): 558-70.

    Article  CAS  PubMed  Google Scholar 

  79. Visvanathan, J., S. Lee, et al. (2007). “The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development.” Genes Dev 21(7): 744-9.

    Article  CAS  PubMed  Google Scholar 

  80. Vita, A., L. De Peri, et al. (2006). “Brain morphology in first-episode schizophrenia: a meta- analysis of quantitative magnetic resonance imaging studies.” Schizophr Res 82(1): 75-88.

    Article  CAS  PubMed  Google Scholar 

  81. Vo, N., M. E. Klein, et al. (2005). “A cAMP-response element binding protein-induced micro- RNA regulates neuronal morphogenesis.” Proc Natl Acad Sci USA 102(45): 16426-31.

    Article  CAS  PubMed  Google Scholar 

  82. Wang, Y., R. Medvid, et al. (2007). “DGCR8 is essential for microRNA biogenesis and silenc- ing of embryonic stem cell self-renewal.” Nat Genet 39(3): 380-5.

    Article  CAS  PubMed  Google Scholar 

  83. Williams, N. M., N. Norton, et al. (2003). “A systematic genomewide linkage study in 353 sib pairs with schizophrenia.” Am J Hum Genet 73(6): 1355-67.

    Article  CAS  PubMed  Google Scholar 

  84. Zuker, M. (2003). “Mfold web server for nucleic acid folding and hybridization prediction.” Nucleic Acids Res 31(13): 3406-15.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Perkins, D.O., Jeffries, C.D. (2008). miRNA and Schizophrenia. In: Ying, SY. (eds) Current Perspectives in microRNAs (miRNA). Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8533-8_15

Download citation

Publish with us

Policies and ethics