Skip to main content

MicroRNA in Neuropsychiatric Diseases

  • Chapter
Current Perspectives in microRNAs (miRNA)

Up to 30% of protein encoding genes are regulated by microRNAs (miRNAs). The miRNAs are abundantly expressed in the brain, and, in particular, during brain development stages. Some miRNAs are essential regulators of left/ right neuronal asymmetry in an invertebrate and brain development in vertebrates. Transfection of some microRNA (miR-124) in human cells changed the expression pattern of mRNAs towards brain-like profiles. It may be expected, therefore, that miRNA-related mechanisms are involved in certain aspects of neuropsychiatric pathologies. The data have been obtained suggesting that depletion of cellular components controlling miRNA processing and biogenesis severely affects brain functions implicated in pathogenesis of neurodegenerative or behavior diseases. Partial or conditional loss of function for Dicer causes loss of dopamine neurons and degeneration of Purkinje cells – mechanisms implicated in Parkinson disease; or enhance neurodegeneration in Drosophila model induced by proteins implicated in polyQ neurodegenerative pathologies. Loss of FMPR protein function is a cause of common mental retardation syndrome (FXS) and function of FMRP or FMPR-related protein in Drosophila (Dfmr1) was linked to RNA-induced silencing complex (RISC). Mutation in putative target for miRNA in SLITRK1 gene is associated with Tourette's neuropsychiatric disorder- the most direct known to date example of linkage between behavior disease and specific miRNA. The pilot studies demonstrated that despite the tiny size miRNAs are quite stable in postmortem tissues and that convergent approach in study of expression and genetic variability of miRNAs in neuropsychiatric pathology is a conceivable goal. It is anticipated that comprehensive studies of miRNA regulators and their targets using innovative genomic technologies may shed a light on unknown aspects in pathogenesis of common neurodegenerative disorders (Alzheimer's disease) and mental disorders (schizophrenia) in a nearest future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. American College of Obstetricians and Gynecologists Committee on Genetics (2006) ACOG committee opinion. No. 338: Screening for fragile X syndrome. Obstet Gynecol 107:1483-1485

    Google Scholar 

  2. Abelson JF, Kwan KY, O’Roak BJ et al. (2005) Sequence variants in SLITRK1 are associated with Tourette’s syndrome. Science 310:317-320

    Article  CAS  PubMed  Google Scholar 

  3. Bassett AS, Chow EW, AbdelMalik P et al. (2003) The schizophrenia phenotype in 22q11 deletion syndrome. Am J Psychiatr 160:1580-1586

    Article  PubMed  Google Scholar 

  4. Bernstein E, Kim SY, Carmell MA et al. (2003) Dicer is essential for mouse development. Nat Genet 35:215-217

    Article  CAS  PubMed  Google Scholar 

  5. Bilen J, Liu N, Bonini NM (2006) A new role for microRNA pathways: modulation of degen-eration induced by pathogenic human disease proteins. Cell Cycle 5:2835-2838

    CAS  PubMed  Google Scholar 

  6. Brennecke J, Hipfner DR, Stark A et al. (2003) Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113:25-36

    Article  CAS  PubMed  Google Scholar 

  7. Burmistrova OA, Goltsov AY, Abramova LI et al. (2007) MicroRNA in schizophrenia: genetic and expression analysis of miR-130b (22q11). Biochemistry (Mosc) 72:578-582

    Article  CAS  Google Scholar 

  8. Caudy AA, Myers M, Hannon GJ et al. (2002) Fragile X-related protein and VIG associate with the RNA interference machinery. Genes Dev 16:2491-2496

    Article  CAS  PubMed  Google Scholar 

  9. Chen K, Rajewsky N (2006) Deep conservation of microRNA-target relationships and 3∋ΥΤΡ motifs in vertebrates, flies, and nematodes. Cold Spring Harb Symp Quant Biol 71:149-156

    Article  CAS  PubMed  Google Scholar 

  10. Cheng HY, Papp JW, Varlamova O et al. (2007) microRNA modulation of circadian-clock period and entrainment. Neuron 54:813-829

    Article  CAS  PubMed  Google Scholar 

  11. Davis CJ, Bohnet SG, Meyerson JM et al (2007) Sleep loss changes microRNA levels in the brain: a possible mechanism for state-dependent translational regulation. Neurosci Lett 422:68-73

    Article  CAS  PubMed  Google Scholar 

  12. Giraldez AJ, Cinalli RM, Glasner ME et al. (2005) MicroRNAs regulate brain morphogenesis in zebrafish. Science 308:833-838

    Article  CAS  PubMed  Google Scholar 

  13. Gitlin L, Karelsky S, Andino R (2002) Short interfering RNA confers intracellular antiviral immunity in human cells. Nature 418:430-434

    Article  CAS  PubMed  Google Scholar 

  14. Greco SJ, Rameshwar P (2007) MicroRNAs regulate synthesis of the neurotransmitter sub-stance P in human mesenchymal stem cell-derived neuronal cells. Proc Natl Acad Sci USA 104:15484-15489

    Article  CAS  PubMed  Google Scholar 

  15. Hansen T, Olsen L, Lindow M et al. (2007) Brain expressed microRNAs implicated in Schizophrenia etiology. PLoS ONE 2:e873

    Article  PubMed  Google Scholar 

  16. Horowitz A, Shifman S, Rivlin N et al. (2005) A survey of the 22q11 microdeletion in a large cohort of schizophrenia patients. Schizophr Res 73:263-267

    Article  PubMed  Google Scholar 

  17. Ishizuka A, Siomi MC, Siomi H (2002) A Drosophila fragile X protein interacts with compo-nents of RNAi and ribosomal proteins. Genes Dev 16:2497-2508

    Article  CAS  PubMed  Google Scholar 

  18. Iwai N, Naraba H (2005) Polymorphisms in human pre-miRNAs. Biochem Biophys Res Commun 331:1439-1444

    Article  CAS  PubMed  Google Scholar 

  19. Jin P, Alisch RS, Warren ST (2004) RNA and microRNAs in fragile X mental retardation. Nat Cell Biol 6:1048-1053

    Article  CAS  PubMed  Google Scholar 

  20. John B, Enright AJ, Aravin A et al. (2004) Human MicroRNA targets. PLoS Biol 2:e363

    Article  PubMed  Google Scholar 

  21. Johnston RJ, Hobert O (2003) A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans. Nature 426:845-849

    Article  CAS  PubMed  Google Scholar 

  22. Karayiorgou M, Gogos JA (2004) The molecular genetics of the 22q11-associated schizophrenia. Brain Res Mol Brain Res 132:95-104

    Article  CAS  PubMed  Google Scholar 

  23. Kennedy S, Wang D, Ruvkun G (2004) A conserved siRNA-degrading RNase negatively regulates RNA interference in C. elegans. Nature 427:645-649

    Article  CAS  PubMed  Google Scholar 

  24. Krichevsky AM, King KS, Donahue CP et al. (2003) A microRNA array reveals extensive regulation of microRNAs during brain development. RNA 9:1274-1281

    Article  CAS  PubMed  Google Scholar 

  25. Kumar P, Wu H, McBride JL et al. (2007) Transvascular delivery of small interfering RNA to the central nervous system. Nature 448:39-43

    Article  CAS  PubMed  Google Scholar 

  26. Landgraf P, Rusu M, Sheridan R et al. (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129:1401-1414

    Article  CAS  PubMed  Google Scholar 

  27. Landthaler M, Yalcin A, Tuschl T (2004) The human DiGeorge syndrome critical region gene 8 and Its D. melanogaster homolog are required for miRNA biogenesis. Curr Biol 14:2162-2167

    Article  CAS  PubMed  Google Scholar 

  28. Leaman D, Chen PY, Fak J et al. (2005) Antisense-mediated depletion reveals essential and specific functions of microRNAs in Drosophila development. Cell 121:1097-1108

    Article  CAS  PubMed  Google Scholar 

  29. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15-20

    Article  CAS  PubMed  Google Scholar 

  30. Lim LP, Lau NC, Garrett-Engele P et al. (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433:769-773

    Article  CAS  PubMed  Google Scholar 

  31. Makeyev EV, Zhang J, Carrasco MA et al. (2007) The MicroRNA miR-124 promotes neuro-nal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell 27:435-448

    Article  CAS  PubMed  Google Scholar 

  32. Miska EA, Varez-Saavedra E, Townsend M et al. (2004) Microarray analysis of microRNA expression in the developing mammalian brain. Genome Biol 5:R68

    Article  PubMed  Google Scholar 

  33. Muchowski PJ, Wacker JL (2005) Modulation of neurodegeneration by molecular chaper-ones. Nat Rev Neurosci 6:11-22

    Article  CAS  PubMed  Google Scholar 

  34. Nelson PT, Baldwin DA, Kloosterman WP et al. (2006) RAKE and LNA-ISH reveal micro-RNA expression and localization in archival human brain. RNA 12:187-191

    Article  CAS  PubMed  Google Scholar 

  35. Okamura K, Ishizuka A, Siomi H et al. (2004) Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways. Genes Dev 18:1655-1666

    Article  CAS  PubMed  Google Scholar 

  36. O’Neill JS, Hastings MH (2007) Circadian clocks: timely interference by MicroRNAs. Curr Biol 17:R760-R762

    Article  PubMed  Google Scholar 

  37. Perkins DO, Jeffries C, Sullivan P (2005) Expanding the ‘central dogma’: the regulatory role of nonprotein coding genes and implications for the genetic liability to schizophrenia. Mol Psychiatr 10:69-78

    Article  CAS  Google Scholar 

  38. Pfeffer S, Sewer A, Lagos-Quintana M et al. (2005) Identification of microRNAs of the her-pesvirus family. Nat Methods 2:269-276

    Article  CAS  PubMed  Google Scholar 

  39. Rogaev EI (2005) Small RNAs in human brain development and disorders. Biochemistry (Mosc) 70:1404-1407

    Article  CAS  Google Scholar 

  40. Sathyan P, Golden HB, Miranda RC (2007) Competing interactions between micro-RNAs determine neural progenitor survival and proliferation after ethanol exposure: evidence from an ex vivo model of the fetal cerebral cortical neuroepithelium. J Neurosci 27:8546-8557

    Article  CAS  PubMed  Google Scholar 

  41. Schaefer A, O’Carroll D, Tan CL et al. (2007) Cerebellar neurodegeneration in the absence of microRNAs. J Exp Med 204:1553-1558

    Article  CAS  PubMed  Google Scholar 

  42. Schratt GM, Tuebing F, Nigh EA et al. (2006) A brain-specific microRNA regulates dendritic spine development. Nature 439:283-289

    Article  CAS  PubMed  Google Scholar 

  43. Simmer F, Tijsterman M, Parrish S et al. (2002) Loss of the putative RNA-directed RNA polymerase RRF-3 makes C. elegans hypersensitive to RNAi. Curr Biol 12:1317-1319

    Article  CAS  PubMed  Google Scholar 

  44. Todd PK, Mack KJ, Malter JS (2003) The fragile X mental retardation protein is required for type-I metabotropic glutamate receptor-dependent translation of PSD-95. Proc Natl Acad Sci USA 100:14374-14378

    Article  CAS  PubMed  Google Scholar 

  45. Vaisse C, Halaas JL, Horvath CM et al. (1996) Leptin activation of Stat3 in the hypothalamus of wild-type and ob/ob mice but not db/db mice. Nat Genet 14:95-97

    Article  CAS  PubMed  Google Scholar 

  46. Wong KK, DeLeeuw RJ, Dosanjh NS et al. (2007) A comprehensive analysis of common copy-number variations in the human genome. Am J Hum Genet 80:91-104

    Article  CAS  PubMed  Google Scholar 

  47. Xie X, Lu J, Kulbokas EJ et al. (2005) Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals. Nature 434:338-345

    Article  CAS  PubMed  Google Scholar 

  48. Xu P, Vernooy SY, Guo M et al. (2003) The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr Biol 13:790-795

    Article  CAS  PubMed  Google Scholar 

  49. Zalfa F, Eleuteri B, Dickson KS et al. (2007) A new function for the fragile X mental retarda-tion protein in regulation of PSD-95 mRNA stability. Nat Neurosci 10:578-587

    Article  CAS  PubMed  Google Scholar 

  50. Kim J, Inoue K, Ishii J et al. (2007) A MicroRNA feedback circuit in midbrain dopamine neurons. Science 317:1220-1224

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Rogaev, E.I., Islamgulov, D.V., Grigorenko, A.P. (2008). MicroRNA in Neuropsychiatric Diseases. In: Ying, SY. (eds) Current Perspectives in microRNAs (miRNA). Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8533-8_13

Download citation

Publish with us

Policies and ethics