Skip to main content

Identification of Cellular Targets for Virally-Encoded miRNAs by Ectopic Expression and Gene Expression Profiling

  • Chapter
Current Perspectives in microRNAs (miRNA)

Since the first report in 2005, more than 120 microRNAs (miRNAs) have been identified in many double stranded DNA viruses-mainly herpesviruses and polyomaviruses [12, 68, 69, 82, 92]. MiRNAs are short 22 ± 3 nt RNA molecules that post-transcriptionally regulate gene expression by binding to 3′ UTRs of target mRNAs thereby inducing translational silencing and/or mRNA degradation [1, 3]. Because miRNAs require only limited complementarity, miRNA targets are difficult to determine [24]. Indeed, to date targets have only been experimentally verified for miRNAs of three viruses. SV40 encodes a miRNA which targets viral large T antigen expression [92]. Several KSHV miRNAs target Thrombospondin 1, a potent inhibitor of angiogenesis [82]. In addition, one KSHV miRNA, miR-K122-11, mimics a human miRNA, hsa-miR-155, involved in hematopoiesis and tumorigenesis. CMV miRNAs target both cellular and viral gene expression [31, 90]. Thus, virally encoded miRNAs regulate fundamental biological processes such as immune recognition, promotion of cell survival, and angiogenesis and may contribute to tumorigenesis. First, we briefly summarize our current knowledge on identification and expression of viral miRNAs with special emphasis on herpes-viruses. Next, we will discuss our work on KSHV-encoded miRNAs to illustrate how viral miRNAs provide a unique opportunity for target identification, and the challenges lying ahead in deciphering their potential roles in viral biology, and pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ambros, V. 2004. The functions of animal microRNAs. Nature 431:350-5.

    CAS  PubMed  Google Scholar 

  2. An, F. Q., N. Compitello, E. Horwitz, M. Sramkoski, E. S. Knudsen, and R. Renne. 2005. The latency-associated nuclear antigen of Kaposi’s sarcoma-associated herpesvirus modulates cel-lular gene expression and protects lymphoid cells from p16 INK4A-induced cell cycle arrest. J Biol Chem 280:3862-74.

    CAS  PubMed  Google Scholar 

  3. Bartel, D. P. 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281-97.

    CAS  PubMed  Google Scholar 

  4. Bennasser, Y., S. Y. Le, M. Benkirane, and K. T. Jeang. 2005. Evidence that HIV-1 encodes an siRNA and a suppressor of RNA silencing. Immunity 22:607-19.

    CAS  PubMed  Google Scholar 

  5. Bennasser, Y., S. Y. Le, M. L. Yeung, and K. T. Jeang. 2004. HIV-1 encoded candidate micro-RNAs and their cellular targets. Retrovirology 1:43.

    PubMed  Google Scholar 

  6. Borsani, O., J. Zhu, P. E. Verslues, R. Sunkar, and J. K. Zhu. 2005. Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell 123:1279-91.

    CAS  PubMed  Google Scholar 

  7. Brennecke, J., A. Stark, R. B. Russell, and S. M. Cohen. 2005. Principles of microRNA-target recognition. PLoS Biol 3:e85.

    PubMed  Google Scholar 

  8. Burgler, C., and P. M. Macdonald. 2005. Prediction and verification of microRNA targets by MovingTargets, a highly adaptable prediction method. BMC Genomics 6:88.

    PubMed  Google Scholar 

  9. Burnside, J., E. Bernberg, A. Anderson, C. Lu, B. C. Meyers, P. J. Green, N. Jain, G. Isaacs, and R. W. Morgan. 2006. Marek’s disease virus encodes MicroRNAs that map to meq and the latency-associated transcript. J Virol 80:8778-86.

    CAS  PubMed  Google Scholar 

  10. Cai, X., and B. R. Cullen. 2006. Transcriptional origin of Kaposi’s sarcoma-associated herpes-virus microRNAs. J Virol 80:2234-42.

    CAS  PubMed  Google Scholar 

  11. Cai, X., G. Li, L. A. Laimins, and B. R. Cullen. 2006. Human papillomavirus genotype 31 does not express detectable microRNA levels during latent or productive virus replication. J Virol 80:10890-3.

    CAS  PubMed  Google Scholar 

  12. Cai, X., S. Lu, Z. Zhang, C. M. Gonzalez, B. Damania, and B. R. Cullen. 2005. Kaposi’s sar-coma-associated herpesvirus expresses an array of viral microRNAs in latently infected cells. Proc Natl Acad Sci USA 102:5570-5.

    CAS  PubMed  Google Scholar 

  13. Cai, X., A. Schafer, S. Lu, J. P. Bilello, R. C. Desrosiers, R. Edwards, N. Raab-Traub, and B. R. Cullen. 2006. Epstein-Barr virus microRNAs are evolutionarily conserved and differentially expressed. PLoS Pathog 2:e23.

    PubMed  Google Scholar 

  14. Calin, G. A., and C. M. Croce. 2006. MicroRNA signatures in human cancers. Nat Rev Cancer 6:857-66.

    CAS  PubMed  Google Scholar 

  15. Cantalupo, P., A. Doering, C. S. Sullivan, A. Pal, K. W. Peden, A. M. Lewis, and J. M. Pipas. 2005. Complete nucleotide sequence of polyomavirus SA12. J Virol 79:13094-104.

    CAS  PubMed  Google Scholar 

  16. Costinean, S., N. Zanesi, Y. Pekarsky, E. Tili, S. Volinia, N. Heerema, and C. M. Croce. 2006. Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. Proc Natl Acad Sci USA 103:7024-9.

    CAS  PubMed  Google Scholar 

  17. Cougot, N., S. Babajko, and B. Seraphin. 2004. Cytoplasmic foci are sites of mRNA decay in human cells. J Cell Biol 165:31-40.

    CAS  PubMed  Google Scholar 

  18. Cui, C., A. Griffiths, G. Li, L. M. Silva, M. F. Kramer, T. Gaasterland, X. J. Wang, and D. M. Coen. 2006. Prediction and identification of herpes simplex virus 1-encoded microRNAs. J Virol 80:5499-508.

    CAS  PubMed  Google Scholar 

  19. de Fraipont, F., A. C. Nicholson, J. J. Feige, and E. G. Van Meir. 2001. Thrombospondins and tumor angiogenesis. Trends Mol Med 7:401-7.

    CAS  PubMed  Google Scholar 

  20. Dews, M., A. Homayouni, D. Yu, D. Murphy, C. Sevignani, E. Wentzel, E. E. Furth, W. M. Lee, G. H. Enders, J. T. Mendell, and A. Thomas-Tikhonenko. 2006. Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat Genet 38:1060-5.

    CAS  PubMed  Google Scholar 

  21. Dittmer, D., M. Lagunoff, R. Renne, K. Staskus, A. Haase, and  D. Ganem. 1998. A cluster of latently expressed genes in Kaposi’s sarcoma-associated herpesvirus. J Virol 72:8309-15.

    CAS  PubMed  Google Scholar 

  22. Dittmer, D. P. 2003. Transcription profile of Kaposi’s sarcoma-associated herpesvirus in primary Kaposi’s sarcoma lesions as determined by real-time PCR arrays. Cancer Res 63:2010-5.

    CAS  PubMed  Google Scholar 

  23. Dittmer, D. P., C. M. Gonzalez, W. Vahrson, S. M. DeWire, R. Hines-Boykin, and B. Damania. 2005. Whole-genome transcription profiling of rhesus monkey rhadinovirus. J Virol 79:8637-50.

    CAS  PubMed  Google Scholar 

  24. Doench, J. G., and P. A. Sharp. 2004. Specificity of microRNA target selection in translational repression. Genes Dev 18:504-11.

    CAS  PubMed  Google Scholar 

  25. Dunn, W., P. Trang, Q. Zhong, E. Yang, C. van Belle, and F. Liu. 2005. Human cytomegalovi-rus expresses novel microRNAs during productive viral infection. Cell Microbiol 7:1684-95.

    CAS  PubMed  Google Scholar 

  26. Enright, A. J., B. John, U. Gaul, T. Tuschl, C. Sander, and D. S. Marks. 2003. MicroRNA tar-gets in Drosophila. Genome Biol 5:R1.

    PubMed  Google Scholar 

  27. Eystathioy, T., E. K. Chan, S. A. Tenenbaum, J. D. Keene, K. Griffith, and M. J. Fritzler. 2002. A phosphorylated cytoplasmic autoantigen, GW182, associates with a unique population of human mRNAs within novel cytoplasmic speckles. Mol Biol Cell 13:1338-51.

    CAS  PubMed  Google Scholar 

  28. Friborg, J., Jr., W. Kong, M. O. Hottiger, and G. J. Nabel. 1999. p53 inhibition by the LANA protein of KSHV protects against cell death. Nature 402:889-94.

    CAS  PubMed  Google Scholar 

  29. Fujimuro, M., F. Y. Wu, C. ApRhys, H. Kajumbula, D. B. Young, G. S. Hayward, and S. D. Hayward. 2003. A novel viral mechanism for dysregulation of beta-catenin in Kaposi’s sarcoma-associated herpesvirus latency. Nat Med 9:300-6.

    CAS  PubMed  Google Scholar 

  30. Grey, F., A. Antoniewicz, E. Allen, J. Saugstad, A. McShea, J. C. Carrington, and J. Nelson. 2005. Identification and characterization of human cytomegalovirus-encoded microRNAs. J Virol 79:12095-9.

    CAS  PubMed  Google Scholar 

  31. Grey, F., H. Meyers, E. A. White, D. H. Spector, and J. Nelson. 2007. A human cytomegalo-virus-encoded microRNA regulates expression of multiple viral genes involved in replication. PLoS Pathog 3:e163.

    PubMed  Google Scholar 

  32. Griffiths-Jones, S. 2004. The microRNA registry. Nucleic Acids Res 32:D109-11.

    CAS  PubMed  Google Scholar 

  33. Grundhoff, A., C. S. Sullivan, and D. Ganem. 2006. A combined computational and microar-ray-based approach identifies novel microRNAs encoded by human gamma-herpesviruses. RNA 12:733-50.

    CAS  PubMed  Google Scholar 

  34. Grimson, A., K. K. Farh, W. K. Johnston, P. Garrett-Engele, L. P. Lim, D. P. Bartel. 2007. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27 (1):91-105.

    CAS  PubMed  Google Scholar 

  35. Han, J., Y. Lee, K. H. Yeom, J. W. Nam, I. Heo, J. K. Rhee, S. Y. Sohn, Y. Cho, B. T. Zhang, and V. N. Kim. 2006. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 125:887-901.

    CAS  PubMed  Google Scholar 

  36. He, L., J. M. Thomson, M. T. Hemann, E. Hernando-Monge, D. Mu, S. Goodson, S. Powers, C. Cordon-Cardo, S. W. Lowe, G. J. Hannon, and S. M. Hammond. 2005. A microRNA polycistron as a potential human oncogene. Nature 435:828-33.

    CAS  PubMed  Google Scholar 

  37. Humphreys, D. T., B. J. Westman, D. I. Martin, and T. Preiss. 2005. MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail func-tion. Proc Natl Acad Sci USA 102:16961-6.

    CAS  PubMed  Google Scholar 

  38. Jin, W. B., F. L. Wu, D. Kong, and A. G. Guo. 2007. HBV-encoded microRNA candidate and its target. Comput Biol Chem. 31(2):124-26.

    CAS  PubMed  Google Scholar 

  39. Johnson, S. M., H. Grosshans, J. Shingara, M. Byram, R. Jarvis, A. Cheng, E. Labourier, K. L. Reinert, D. Brown, and F. J. Slack. 2005. Ras is regulated by the let.7 microRNA family. Cell 120(5):635-47.

    CAS  PubMed  Google Scholar 

  40. John, B., A. J. Enright, A. Aravin, T. Tuschl, C. Sander, and D. S. Marks. 2004. Human MicroRNA targets. PLoS Biol 2:e363.

    PubMed  Google Scholar 

  41. Jopling, C. L., M. Yi, A. M. Lancaster, S. M. Lemon, and P. Sarnow. 2005. Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science 309:1577-81.

    CAS  PubMed  Google Scholar 

  42. Lau, N. C., L. P. Lim, E. G. Weinstein, and D. P. Bartel. 2001. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294:858-62.

    CAS  PubMed  Google Scholar 

  43. Lawler, J. 2002. Thrombospondin-1 as an endogenous inhibitor of angiogenesis and tumor growth. J Cell Mol Med 6:1-12.

    CAS  PubMed  Google Scholar 

  44. Lecellier, C. H., P. Dunoyer, K. Arar, J. Lehmann-Che, S. Eyquem, C. Himber, A. Saib, and O. Voinnet. 2005. A cellular microRNA mediates antiviral defense in human cells. Science 308:557-60.

    CAS  PubMed  Google Scholar 

  45. Lee, R. C., R. L. Feinbaum, and V. Ambros. 1993. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843-54.

    CAS  PubMed  Google Scholar 

  46. Lee, Y., C. Ahn, J. Han, H. Choi, J. Kim, J. Yim, J. Lee, P. Provost, O. Radmark, S. Kim, and V. N. Kim. 2003. The nuclear RNase III Drosha initiates microRNA processing. Nature 425:415-9.

    CAS  PubMed  Google Scholar 

  47. Leung, A. K. and P. A. Sharp. 2007. microRNAs: a safeguard against turmoil? Cell 130(4): 581-85.

    CAS  PubMed  Google Scholar 

  48. Lewis, B. P., C. B. Burge, and D. P. Bartel. 2005. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15-20.

    CAS  PubMed  Google Scholar 

  49. Lewis, B. P., I. H. Shih, M. W. Jones-Rhoades, D. P. Bartel, and C. B. Burge. 2003. Prediction of mammalian microRNA targets. Cell 115:787-98.

    CAS  PubMed  Google Scholar 

  50. Li, H., T. Komatsu, B. J. Dezube, and K. M. Kaye. 2002. The Kaposi’s sarcoma-associated herpesvirus K12 transcript from a primary effusion lymphoma contains complex repeat ele-ments, is spliced, and initiates from a novel promoter. J Virol 76:11880-8.

    CAS  PubMed  Google Scholar 

  51. Li, H., W. X. Li, and S. W. Ding. 2002. Induction and suppression of RNA silencing by an animal virus. Science 296:1319-21.

    CAS  PubMed  Google Scholar 

  52. Lin, J., and B. R. Cullen. 2007. Analysis of the interaction of primate retroviruses with the human RNA interference machinery. J Virol 81:12218-26.

    CAS  PubMed  Google Scholar 

  53. Liu, Q., T. A. Rand, S. Kalidas, F. Du, H. E. Kim, D. P. Smith, and X. Wang. 2003. R2D2, a bridge between the initiation and effector steps of the Drosophila RNAi pathway. Science 301:1921-5.

    CAS  PubMed  Google Scholar 

  54. Lu, S. and B. R. Cullen. 2004. Adenovirus VA1 noncoding RNA can inhibit small interfering RNA and MicroRNA biogenesis. J Virol 78(23):12868-76.

    CAS  PubMed  Google Scholar 

  55. Lu, R., M. Maduro, F. Li, H. W. Li, G. Broitman-Maduro, W. X. Li, and S. W. Ding. 2005. Animal virus replication and RNAi-mediated antiviral silencing in Caenorhabditis elegans. Nature 436:1040-3.

    CAS  PubMed  Google Scholar 

  56. Maroney, P. A., Y. Yu, J. Fisher, and T. W. Nilsen. 2006. Evidence that microRNAs are associ-ated with translating messenger RNAs in human cells. Nat Struct Mol Biol 13:1102-7.

    CAS  PubMed  Google Scholar 

  57. Matsumura, S., Y. Fujita, E. Gomez, N. Tanese, and A. C. Wilson. 2005. Activation of Kaposi’s sarcoma-associated Herpesvirus major latency locus by the lytic switch protein RTA (ORF50). J Virol 79(13):8493-505.

    CAS  PubMed  Google Scholar 

  58. Mayr, C., M. T. Hemann, and D. P. Bartel. 2007. Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science 315:1576-9.

    CAS  PubMed  Google Scholar 

  59. McCormick, C., and D. Ganem. 2005. The kaposin B protein of KSHV activates the p38/MK2 pathway and stabilizes cytokine mRNAs. Science 307:739-41.

    CAS  PubMed  Google Scholar 

  60. Moore, P. S., L. A. Kingsley, S. D. Holmberg, T. Spira, P. Gupta, D. R. Hoover, J. P. Parry, L. J. Conley, H. W. Jaffe, and Y. Chang. 1996. Kaposi’s sarcoma-associated herpesvirus infection prior to onset of Kaposi’s sarcoma. Aids 10:175-80.

    CAS  PubMed  Google Scholar 

  61. Nilsen, T. W. 2007. Mechanisms of microRNA-mediated gene regulation in animal cells. Trends Genet 23:243-9.

    CAS  PubMed  Google Scholar 

  62. Omoto, S., and Y. R. Fujii. 2005. Regulation of human immunodeficiency virus 1 transcrip-tion by nef microRNA. J Gen Virol 86:751-5.

    CAS  PubMed  Google Scholar 

  63. Omoto, S., M. Ito, Y. Tsutsumi, Y. Ichikawa, H. Okuyama, E. A. Brisibe, N. K. Saksena, and Y. R. Fujii. 2004. HIV-1 nef suppression by virally encoded microRNA. Retrovirology 1:44.

    PubMed  Google Scholar 

  64. Pasquinelli, A. E., S. Hunter, and J. Bracht. 2005. MicroRNAs: a developing story. Curr Opin Genet Dev 15:200-5.

    CAS  PubMed  Google Scholar 

  65. Pasquinelli, A. E., B. J. Reinhart, F. Slack, M. Q. Martindale, M. I. Kuroda, B. Maller, D. C. Hayward, E. E. Ball, B. Degnan, P. Muller, J. Spring, A. Srinivasan, M. Fishman, J. Finnerty, J. Corbo, M. Levine, P. Leahy, E. Davidson, and G. Ruvkun. 2000. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408:86-9.

    CAS  PubMed  Google Scholar 

  66. Pedersen, I. M., G. Cheng, S. Wieland, S. Volinia, C. M. Croce, F. V. Chisari, and M. David. 2007. Interferon modulation of cellular microRNAs as an antiviral mechanism. Nature 449:919-22.

    CAS  PubMed  Google Scholar 

  67. Petersen, C. P., M. E. Bordeleau, J. Pelletier, and P. A. Sharp. 2006. Short RNAs repress translation after initiation in mammalian cells. Mol Cell 21:533-42.

    CAS  PubMed  Google Scholar 

  68. Pfeffer, S., A. Sewer, M. Lagos-Quintana, R. Sheridan, C. Sander, F. A. Grasser, L. F. van Dyk, C. K. Ho, S. Shuman, M. Chien, J. J. Russo, J. Ju, G. Randall, B. D. Lindenbach, C. M. Rice, V. Simon, D. D. Ho, M. Zavolan, and T. Tuschl. 2005. Identification of microRNAs of the herpesvirus family. Nat Methods 2:269-76.

    CAS  PubMed  Google Scholar 

  69. Pfeffer, S., M. Zavolan, F. A. Grasser, M. Chien, J. J. Russo, J. Ju, B. John, A. J. Enright, D. Marks, C. Sander, and T. Tuschl. 2004. Identification of virus-encoded microRNAs. Science 304:734-6.

    CAS  PubMed  Google Scholar 

  70. Pillai, R. S., S. N. Bhattacharyya, C. G. Artus, T. Zoller, N. Cougot, E. Basyuk, E. Bertrand, and W. Filipowicz. 2005. Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science 309:1573-6.

    CAS  PubMed  Google Scholar 

  71. Qu, F., T. Ren, and T. J. Morris. 2003. The coat protein of turnip crinkle virus suppresses posttranscriptional gene silencing at an early initiation step. J Virol 77:511-22.

    CAS  PubMed  Google Scholar 

  72. Radkov, S. A., P. Kellam, and C. Boshoff. 2000. The latent nuclear antigen of Kaposi sar-coma-associated herpesvirus targets the retinoblastoma-E2F pathway and with the oncogene Hras transforms primary rat cells. Nat Med 6:1121-7.

    CAS  PubMed  Google Scholar 

  73. Raja, S. M., B. Wang, M. Dantuluri, U. R. Desai, B. Demeler, K. Spiegel, S. S. Metkar, and C. J. Froelich. 2002. Cytotoxic cell granule-mediated apoptosis. Characterization of the macromolecular complex of granzyme B with serglycin. J Biol Chem 277:49523-30.

    CAS  PubMed  Google Scholar 

  74. Rangaswami, H., A. Bulbule, and G. C. Kundu. 2006. Osteopontin: role in cell signaling and cancer progression. Trends Cell Biol 16:79-87.

    CAS  PubMed  Google Scholar 

  75. Reinhart, B. J., F. J. Slack, M. Basson, A. E. Pasquinelli, J. C. Bettinger, A. E. Rougvie, H. R. Horvitz, and G. Ruvkun. 2000. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403:901-6.

    CAS  PubMed  Google Scholar 

  76. Renne, R., C. Barry, D. Dittmer, N. Compitello, P. O. Brown, and D. Ganem. 2001. Modulation of cellular and viral gene expression by the latency-associated nuclear antigen of Kaposi’s sarcoma-associated herpesvirus. J Virol 75:458-68.

    CAS  PubMed  Google Scholar 

  77. Rodriguez, A., E. Vigorito, S. Clare, M. V. Warren, P. Couttet, D. R. Soond, S. van Dongen, R. J. Grocock, P. P. Das, E. A. Miska, D. Vetrie, K. Okkenhaug, A. J. Enright, G. Dougan, M. Turner, and A. Bradley. 2007. Requirement of bic/microRNA-155 for normal immune function. Science 316:608-11.

    CAS  PubMed  Google Scholar 

  78. Rollo, E. E., S. J. Hempson, A. Bansal, E. Tsao, I. Habib, S. R. Rittling, D. T. Denhardt, E. R. Mackow, and R. D. Shaw. 2005. The cytokine osteopontin modulates the severity of rotavirus diarrhea. J Virol 79:3509-16.

    CAS  PubMed  Google Scholar 

  79. Ruvkun, G., B. Wightman, and I. Ha. 2004. The 20 years it took to recognize the importance of tiny RNAs. Cell 116:S93-6, 2 p following S96.

    CAS  PubMed  Google Scholar 

  80. Sadler, R., L. Wu, B. Forghani, R. Renne, W. Zhong, B. Herndier, and D. Ganem. 1999. A complex translational program generates multiple novel proteins from the latently expressed kaposin (K12) locus of Kaposi’s sarcoma- associated herpesvirus. J Virol 73:5722-30.

    CAS  PubMed  Google Scholar 

  81. Saetrom, O., O. Snove, Jr., and P.Saetrom. 2005. Weighted sequence motifs as an improved seeding step in microRNA target prediction algorithms. RNA 11:995-1003.

    CAS  PubMed  Google Scholar 

  82. Samols, M. A., L. Skalsky, and R. Renne. 2005. Cloning and identification of a microRNA cluster within the latency-associated region of Kaposi’s sarcoma-associated herpesvirus. J Virol 79:9301-5.

    CAS  PubMed  Google Scholar 

  83. Samols, M. A., R. L. Skalsky, A. M. Maldonado, A. Riva, M. C. Lopez, H. V. Baker, and R. Renne. 2007. Identification of cellular genes targeted by KSHV-encoded microRNAs. PLoS Pathog 3(5):e65

    PubMed  Google Scholar 

  84. Schafer, A., X. Cai, J. P. Bilello, R. C. Desrosiers, and B. R. Cullen. 2007. Cloning and analysis of microRNAs encoded by the primate gamma-herpesvirus rhesus monkey rhadinovirus. Virology 364:21-7.

    PubMed  Google Scholar 

  85. Schultz-Cherry, S., H. Chen, D. F. Mosher, T. M. Misenheimer, H. C. Krutzsch, D. D. Roberts, and J. E. Murphy-Ullrich. 1995. Regulation of transforming growth factor-beta activation by discrete sequences of thrombospondin 1. J Biol Chem 270:7304-10.

    CAS  PubMed  Google Scholar 

  86. Sen, G. L., and H. M. Blau. 2005. Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies. Nat Cell Biol 7:633-6.

    CAS  PubMed  Google Scholar 

  87. Sethupathy, P., B. Corda, and A. G. Hatzigeorgiou. 2006. TarBase: a comprehensive database of experimentally supported animal microRNA targets. RNA 12:192-7.

    CAS  PubMed  Google Scholar 

  88. Skalsky, R. L., M. A. Samols, K. B. Plaisance, I. W. Boss, A. Riva, M. C. Lopez, H. V. Baker, and R. Renne. 2007. Kaposi’s sarcoma-associated herpesvirus encodes an otholog of miR-155. J Virol 81(23):12836-45. Epub 2007 Sept 19.

    CAS  PubMed  Google Scholar 

  89. Slack, F. J., M. Basson, Z. Liu, V. Ambros, H. R. Horvitz, and G. Ruvkun. 2000. The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor. Mol Cell 5:659-69.

    CAS  PubMed  Google Scholar 

  90. Stern-Ginossar, N., N. Elefant, A. Zimmermann, D. G. Wolf, N. Saleh, M. Biton, E. Horwitz, Z. Prokocimer, M. Prichard, G. Hahn, D. Goldman-Wohl, C. Greenfield, S. Yagel, H. Hengel, Y. Altuvia, H. Margalit, and O. Mandelboim. 2007. Host immune system gene targeting by a viral miRNA. Science 317:376-81.

    CAS  PubMed  Google Scholar 

  91. Sullivan, C. S., and D. Ganem. 2005. A virus-encoded inhibitor that blocks RNA interference in mammalian cells. J Virol 79:7371-9.

    CAS  PubMed  Google Scholar 

  92. Sullivan, C. S., A. T. Grundhoff, S. Tevethia, J. M. Pipas, and D. Ganem. 2005. SV40-encoded microRNAs regulate viral gene expression and reduce susceptibility to cytotoxic T cells. Nature 435:682-6.

    CAS  PubMed  Google Scholar 

  93. Talbot, S. J., R. A. Weiss, P. Kellam, and C. Boshoff. 1999. Transcriptional analysis of human herpesvirus-8 open reading frames 71, 72, 73, K14, and 74 in a primary effusion lymphoma cell line. Virology 257:84-94.

    CAS  PubMed  Google Scholar 

  94. Taraboletti, G., R. Benelli, P. Borsotti, M. Rusnati, M. Presta, R. Giavazzi, L. Ruco, and A. Albini. 1999. Thrombospondin-1 inhibits Kaposi’s sarcoma (KS) cell and HIV-1 Tatinduced angiogenesis and is poorly expressed in KS lesions. J Pathol 188:76-81.

    CAS  PubMed  Google Scholar 

  95. Thai, T. H., D. P. Calado, S. Casola, K. M. Ansel, C. Xiao, Y. Xue, A. Murphy, D. Frendewey, D. Valenzuela, J. L. Kutok, M. Schmidt-Supprian, N. Rajewsky, G. Yancopoulos, A. Rao, and K. Rajewsky. 2007. Regulation of the germinal center response by microRNA-155. Science 316:604-8.

    CAS  PubMed  Google Scholar 

  96. Wang, X. H., R. Aliyari, W. X. Li, H. W. Li, K. Kim, R. Carthew, P. Atkinson, and S. W. Ding. 2006. RNA interference directs innate immunity against viruses in adult Drosophila. Science 312:452-4.

    CAS  PubMed  Google Scholar 

  97. Wightman, B., T. R. Burglin, J. Gatto, P. Arasu, and G. Ruvkun. 1991. Negative regulatory sequences in the lin-14 3′-untranslated region are necessary to generate a temporal switch during Caenorhabditis elegans development. Genes Dev 5:1813-24.

    CAS  PubMed  Google Scholar 

  98. Wightman, B., I. Ha, and G. Ruvkun. 1993. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75:855-62.

    CAS  PubMed  Google Scholar 

  99. Wilkins, C., R. Dishongh, S. C. Moore, M. A. Whitt, M. Chow, and K. Machaca. 2005. RNA interference is an antiviral defence mechanism in Caenorhabditis elegans. Nature 436:1044-7.

    CAS  PubMed  Google Scholar 

  100. Wu, L., and J. G. Belasco. 2008. Let me count the ways: mechanisms of gene regulation by miRNAs and siRNAs. Mol Cell 29:1-7.

    PubMed  Google Scholar 

  101. Xie, Z., L. K. Johansen, A. M. Gustafson, K. D. Kasschau, A. D. Lellis, D. Zilberman, S. E. Jacobsen, and J. C. Carrington. 2004. Genetic and functional diversification of small RNA pathways in plants. PLoS Biol 2:E104.

    PubMed  Google Scholar 

  102. Yao, Y., Y. Zhao, H. Xu, L. P. Smith, C. H. Lawrie, A. Sewer, M. Zavolan, and V. Nair. 2007. Marek’s Disease Virus Type 2 (MDV-2)-encoded MicroRNAs show no sequence conservation with those encoded by MDV-1. J Virol 81:7164-70.

    CAS  PubMed  Google Scholar 

  103. Zeng, Y., R. Yi, and B. R. Cullen. 2003. MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc Natl Acad Sci USA 100:9779-84.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Samols, M.A., Skalsky, R.L., Renne, R. (2008). Identification of Cellular Targets for Virally-Encoded miRNAs by Ectopic Expression and Gene Expression Profiling. In: Ying, SY. (eds) Current Perspectives in microRNAs (miRNA). Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8533-8_12

Download citation

Publish with us

Policies and ethics