Skip to main content

Epigenetic Regulation of miRNA in Stem Cells

  • Chapter
Current Perspectives in microRNAs (miRNA)
  • 1413 Accesses

The ability of stem cells to maintain the necessary potency to differentiate into unique progeny, as well as the process of differentiation itself, exemplifies the critical role of epigenetic regulation in modulating the expression of common genomes so as to link cellular genotype with phenotype. Various types of epigenetic regulation in the context of stem cells, and in particular that of epigenetic regulation of non-coding microRNA, hold significance during neurogenesis from a stem cell state. Potential mechanisms and discussion on the role of epigenetic regulation of miRNA expression during stem cell epigenesis and function will be put forth. Additionally, descriptions of current techniques enabling identification of key regulatory pathways involving miRNA via comprehensive expression profiling are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allan AM, Liang X, Luo Y, Pak C, Li X, Szulwach KE, Chen D, Jin P, Zhao X (2008) The loss of methyl-CpG binding protein 1 leads to autism-like behavioral defects. Human and Molecular Genetics, Advance Access doi:10.1093/hmg/ddn102.

    Google Scholar 

  2. Babak T, Zhang W, Morris Q, Blencowe BJ, Hughes TR (2004) Probing microRNAs with microarrays: tissue specificity and functional inference. RNA 10:1813-1819.

    Article  CAS  PubMed  Google Scholar 

  3. Ballas N, Grunseich C, Lu DD, Speh JC, Mandel G (2005) REST and its corepressors mediate plasticity of neuronal gene chromatin throughout neurogenesis. Cell 121:645-657.

    Article  CAS  PubMed  Google Scholar 

  4. Barad O, Meiri E, Avniel A, Aharonov R, Barzilai A, Bentwich I, Einav U, Gilad S, Hurban P, Karov Y, Lobenhofer EK, Sharon E, Shiboleth YM, Shtutman M, Bentwich Z, Einat P (2004) MicroRNA expression detected by oligonucleotide microarrays: system establishment and expression profiling in human tissues. Genome Res 14:2486-2494.

    Article  CAS  PubMed  Google Scholar 

  5. Bernstein BE, Meissner A, Lander ES (2007) The mammalian epigenome. Cell 128:669-681.

    Article  CAS  PubMed  Google Scholar 

  6. Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16:6-21.

    Article  CAS  PubMed  Google Scholar 

  7. Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, Guenther MG, Kumar RM, Murray HL, Jenner RG, Gifford DK, Melton DA, Jaenisch R, Young RA (2005) Core tran-scriptional regulatory circuitry in human embryonic stem cells. Cell 122:947-956.

    Article  CAS  PubMed  Google Scholar 

  8. Boyer LA, Plath K, Zeitlinger J, Brambrink T, Medeiros LA, Lee TI, Levine SS, Wernig M, Tajonar A, Ray MK, Bell GW, Otte AP, Vidal M, Gifford DK, Young RA, Jaenisch R (2006) Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441:349-353.

    Article  CAS  PubMed  Google Scholar 

  9. Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH, Feldmann G, Yamakuchi M, Ferlito M, Lowenstein CJ, Arking DE, Beer MA, Maitra A, Mendell JT (2007) Transactivation of miR-34a by p53 broadly influences gene expression and promotes apopto- sis. Mol Cell 26:745-752.

    Article  CAS  PubMed  Google Scholar 

  10. Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, Lao KQ, Livak KJ, Guegler KJ (2005) Real-time quantifica-tion of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33:e179.

    Article  PubMed  Google Scholar 

  11. Conaco C, Otto S, Han JJ, Mandel G (2006) Reciprocal actions of REST and a microRNA promote neuronal identity. Proc Natl Acad Sci USA 103:2422-2427.

    Article  CAS  PubMed  Google Scholar 

  12. Fujita N, Watanabe S, Ichimura T, Ohkuma Y, Chiba T, Saya H, Nakao M (2003a) MCAF mediates MBD1-dependent transcriptional repression. Mol Cell Biol 23:2834-2843.

    Article  CAS  Google Scholar 

  13. Fujita N, Watanabe S, Ichimura T, Tsuruzoe S, Shinkai Y, Tachibana M, Chiba T, Nakao M (2003b) Methyl-CpG binding domain 1 (MBD1) interacts with the Suv39h1-HP1 heterochro-matic complex for DNA methylation-based transcriptional repression. J Biol Chem 278:24132-24138.

    Article  CAS  Google Scholar 

  14. He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S, Powers S, Cordon-Cardo C, Lowe SW, Hannon GJ, Hammond SM (2005) A microRNA polycistron as a poten-tial human oncogene. Nature 435:828-833.

    Article  CAS  PubMed  Google Scholar 

  15. He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y, Xue W, Zender L, Magnus J, Ridzon D, Jackson AL, Linsley PS, Chen C, Lowe SW, Cleary MA, Hannon GJ (2007) A microRNA component of the p53 tumour suppressor network. Nature 447:1130-1134.

    Article  CAS  PubMed  Google Scholar 

  16. Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome inte-grates intrinsic and environmental signals. Nat Genet 33 Suppl:245-254.

    Article  CAS  PubMed  Google Scholar 

  17. Jessberger S, Nakashima K, Clemenson GD, Jr., Mejia E, Mathews E, Ure K, Ogawa S, Sinton CM, Gage FH, Hsieh J (2007) Epigenetic modulation of seizure-induced neurogenesis and cognitive decline. J Neurosci 27:5967-5975.

    Article  CAS  PubMed  Google Scholar 

  18. Jones PA, Takai D (2001) The role of DNA methylation in mammalian epigenetics. Science 293:1068-1070.

    Article  CAS  PubMed  Google Scholar 

  19. Jorgensen HF, Ben-Porath I, Bird AP (2004) Mbd1 is recruited to both methylated and non-methylated CpGs via distinct DNA binding domains. Mol Cell Biol 24:3387-3395.

    Article  CAS  PubMed  Google Scholar 

  20. Karres JS, Hilgers V, Carrera I, Treisman J, Cohen SM (2007) The conserved microRNA miR-8 tunes atrophin levels to prevent neurodegeneration in Drosophila. Cell 131:136-145.

    Article  CAS  PubMed  Google Scholar 

  21. Kim J, Krichevsky A, Grad Y, Hayes GD, Kosik KS, Church GM, Ruvkun G (2004) Identification of many microRNAs that copurify with polyribosomes in mammalian neurons. Proc Natl Acad Sci USA 101:360-365.

    Article  CAS  PubMed  Google Scholar 

  22. Kim J, Inoue K, Ishii J, Vanti WB, Voronov SV, Murchison E, Hannon G, Abeliovich A (2007) A MicroRNA feedback circuit in midbrain dopamine neurons. Science 317:1220-1224.

    Article  CAS  PubMed  Google Scholar 

  23. Klose RJ, Bird AP (2006) Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci 31:89-97.

    Article  CAS  PubMed  Google Scholar 

  24. Klose RJ, Sarraf SA, Schmiedeberg L, McDermott SM, Stancheva I, Bird AP (2005) DNA binding selectivity of MeCP2 due to a requirement for A/T sequences adjacent to methyl-CpG. Mol Cell 19:667-678.

    Article  CAS  PubMed  Google Scholar 

  25. Kuwabara T, Hsieh J, Nakashima K, Taira K, Gage FH (2004) A small modulatory dsRNA specifies the fate of adult neural stem cells. Cell 116:779-793.

    Article  CAS  PubMed  Google Scholar 

  26. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294:853-858.

    Article  CAS  PubMed  Google Scholar 

  27. Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T (2002) Identification of tissue-specific microRNAs from mouse. Curr Biol 12:735-739.

    Article  CAS  PubMed  Google Scholar 

  28. Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, Pfeffer S, Rice A, Kamphorst AO, Landthaler M, Lin C, Socci ND, Hermida L, Fulci V, Chiaretti S, Foa R, Schliwka J, Fuchs U, Novosel A, Muller RU, Schermer B, Bissels U, Inman J, Phan Q, Chien M, Weir DB, Choksi R, De Vita G, Frezzetti D, Trompeter HI, Hornung V, Teng G, Hartmann G, Palkovits M, Di Lauro R, Wernet P, Macino G, Rogler CE, Nagle JW, Ju J, Papavasiliou FN, Benzing T, Lichter P, Tam W, Brownstein MJ, Bosio A, Borkhardt A, Russo JJ, Sander C, Zavolan M, Tuschl T (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129:1401-1414.

    Article  CAS  PubMed  Google Scholar 

  29. Lau NC, Lim LP, Weinstein EG, Bartel DP (2001) An abundant class of tiny RNAs with prob-able regulatory roles in Caenorhabditis elegans. Science 294:858-862.

    Article  CAS  PubMed  Google Scholar 

  30. Lee RC, Ambros V (2001) An extensive class of small RNAs in Caenorhabditis elegans. Science 294:862-864.

    Article  CAS  PubMed  Google Scholar 

  31. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843-854.

    Article  CAS  PubMed  Google Scholar 

  32. Lee TI, Jenner RG, Boyer LA, Guenther MG, Levine SS, Kumar RM, Chevalier B, Johnstone SE, Cole MF, Isono K, Koseki H, Fuchikami T, Abe K, Murray HL, Zucker JP, Yuan B, Bell GW, Herbolsheimer E, Hannett NM, Sun K, Odom DT, Otte AP, Volkert TL, Bartel DP, Melton DA, Gifford DK, Jaenisch R, Young RA (2006) Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 125:301-313.

    Article  CAS  PubMed  Google Scholar 

  33. Lunyak VV, Rosenfeld MG (2005) No rest for REST: REST/NRSF regulation of neurogenesis. Cell 121:499-501.

    Article  CAS  PubMed  Google Scholar 

  34. Lunyak VV, Burgess R, Prefontaine GG, Nelson C, Sze SH, Chenoweth J, Schwartz P, Pevzner PA, Glass C, Mandel G, Rosenfeld MG (2002) Corepressor-dependent silencing of chromosomal regions encoding neuronal genes. Science 298:1747-1752.

    Article  CAS  PubMed  Google Scholar 

  35. Makeyev EV, Zhang J, Carrasco MA, Maniatis T (2007) The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell 27:435-448.

    Article  CAS  PubMed  Google Scholar 

  36. Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G, Alvarez P, Brockman W, Kim TK, Koche RP, Lee W, Mendenhall E, O’Donovan A, Presser A, Russ C, Xie X, Meissner A, Wernig M, Jaenisch R, Nusbaum C, Lander ES, Bernstein BE (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448:553-560.

    Article  CAS  PubMed  Google Scholar 

  37. Ming GL, Song H (2005) Adult neurogenesis in the mammalian central nervous system. Annu Rev Neurosci 28:223-250.

    Article  CAS  PubMed  Google Scholar 

  38. Miremadi A, Oestergaard MZ, Pharoah PD, Caldas C (2007) Cancer genetics of epigenetic genes. Hum Mol Genet 16 Spec No 1:R28-49.

    Article  Google Scholar 

  39. Miska EA, Alvarez-Saavedra E, Townsend M, Yoshii A, Sestan N, Rakic P, Constantine-Paton M, Horvitz HR (2004) Microarray analysis of microRNA expression in the developing mammalian brain. Genome Biol 5:R68.

    Article  PubMed  Google Scholar 

  40. Molofsky AV, He S, Bydon M, Morrison SJ, Pardal R (2005) Bmi-1 promotes neural stem cell self-renewal and neural development but not mouse growth and survival by repressing the p16Ink4a and p19Arf senescence pathways. Genes Dev 19:1432-1437.

    Article  CAS  PubMed  Google Scholar 

  41. Moretti P, Zoghbi HY (2006) MeCP2 dysfunction in Rett syndrome and related disorders. Curr Opin Genet Dev 16:276-281.

    Article  PubMed  Google Scholar 

  42. Muotri AR, Chu VT, Marchetto MC, Deng W, Moran JV, Gage FH (2005) Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition. Nature 435:903-910.

    Article  CAS  PubMed  Google Scholar 

  43. O’Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT (2005) c-Myc-regulated micro-RNAs modulate E2F1 expression. Nature 435:839-843.

    Article  PubMed  Google Scholar 

  44. Plath K, Fang J, Mlynarczyk-Evans SK, Cao R, Worringer KA, Wang H, de la Cruz CC, Otte AP, Panning B, Zhang Y (2003) Role of histone H3 lysine 27 methylation in X inactivation. Science 300:131-135.

    Article  CAS  PubMed  Google Scholar 

  45. Reynolds BA, Weiss S (1996) Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Dev Biol 175:1-13.

    Article  CAS  PubMed  Google Scholar 

  46. Reynolds BA, Weiss, S. (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255:1646.

    Article  Google Scholar 

  47. Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, Goodnough LH, Helms JA, Farnham PJ, Segal E, Chang HY (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129:1311-1323.

    Article  CAS  PubMed  Google Scholar 

  48. Sanchez-Elsner T, Gou D, Kremmer E, Sauer F (2006) Noncoding RNAs of trithorax response elements recruit Drosophila Ash1 to Ultrabithorax. Science 311:1118-1123.

    Article  CAS  PubMed  Google Scholar 

  49. Sarraf SA, Stancheva I (2004) Methyl-CpG binding protein MBD1 couples histone H3 meth-ylation at lysine 9 by SETDB1 to DNA replication and chromatin assembly. Mol Cell 15:595-605.

    Article  CAS  PubMed  Google Scholar 

  50. Sempere LF, Freemantle S, Pitha-Rowe I, Moss E, Dmitrovsky E, Ambros V (2004) Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed micro-RNAs with possible roles in murine and human neuronal differentiation. Genome Biol 5: R13.

    Article  PubMed  Google Scholar 

  51. Setoguchi H, Namihira M, Kohyama J, Asano H, Sanosaka T, Nakashima K (2006) Methyl-CpG binding proteins are involved in restricting differentiation plasticity in neurons. J Neurosci Res 84:969-979.

    Article  CAS  PubMed  Google Scholar 

  52. Shahbazian MD, Zoghbi HY (2002) Rett syndrome and MeCP2: linking epigenetics and neu-ronal function. Am J Hum Genet 71:1259-1272.

    Article  CAS  PubMed  Google Scholar 

  53. Shen S, Li J, Casaccia-Bonnefil P (2005) Histone modifications affect timing of oligodendro-cyte progenitor differentiation in the developing rat brain. J Cell Biol 169:577-589.

    Article  CAS  PubMed  Google Scholar 

  54. Stanfield BB, Trice JE (1988) Evidence that granule cells generated in the dentate gyrus of adult rats extend axonal projections. Exp Brain Res 72:399-406.

    CAS  PubMed  Google Scholar 

  55. Takizawa T, Nakashima K, Namihira M, Ochiai W, Uemura A, Yanagisawa M, Fujita N, Nakao M, Taga T (2001) DNA methylation is a critical cell-intrinsic determinant of astrocyte differentiation in the fetal brain. Dev Cell 1:749-758.

    Article  CAS  PubMed  Google Scholar 

  56. Tang X, Falls DL, Li X, Lane T, Luskin MB (2007) Antigen-retrieval procedure for bromode-oxyuridine immunolabeling with concurrent labeling of nuclear DNA and antigens damaged by HCl pretreatment. J Neurosci 27:5837-5844.

    Article  CAS  PubMed  Google Scholar 

  57. Torres-Padilla ME, Parfitt DE, Kouzarides T, Zernicka-Goetz M (2007) Histone arginine methylation regulates pluripotency in the early mouse embryo. Nature 445:214-218.

    Article  CAS  PubMed  Google Scholar 

  58. Ueba T, Kaspar B, Zhao X, Gage FH (1999) Repression of human fibroblast growth factor 2 by a novel transcription factor. J Biol Chem 274:10382-10387.

    Article  CAS  PubMed  Google Scholar 

  59. Visvanathan J, Lee S, Lee B, Lee JW, Lee SK (2007) The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development. Genes Dev 21:744-749.

    Article  CAS  PubMed  Google Scholar 

  60. Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75:855-862.

    Article  CAS  PubMed  Google Scholar 

  61. Wu H, Xu J, Pang ZP, Ge W, Kim KJ, Blanchi B, Chen C, Sudhof TC, Sun YE (2007) Integrative genomic and functional analyses reveal neuronal subtype differentiation bias in human embryonic stem cell lines. Proc Natl Acad Sci USA 104:13821-13826.

    Article  CAS  PubMed  Google Scholar 

  62. Xiao C, Calado DP, Galler G, Thai TH, Patterson HC, Wang J, Rajewsky N, Bender TP, Rajewsky K (2007) MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb. Cell 131:146-159.

    Article  CAS  PubMed  Google Scholar 

  63. Zhao X, Schaffer D, Gage F (2004) Neurogenesis in adult brain: understanding the mechanism and regulation. In: Stem cells in the Nervous System: Functional and Clinical Implications. Berlin, Heidelberg: Springer.

    Google Scholar 

  64. Zhao X, Ueba T, Christie BR, Barkho B, McConnell MJ, Nakashima K, Lein ES, Eadie BD, Willhoite AR, Muotri AR, Summers RG, Chun J, Lee KF, Gage FH (2003) Mice lacking methyl-CpG binding protein 1 have deficits in adult neurogenesis and hippocampal function. Proc Natl Acad Sci USA 100:6777-6782.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Szulwach, K., Li, X., Zhao, X., Jin, P. (2008). Epigenetic Regulation of miRNA in Stem Cells. In: Ying, SY. (eds) Current Perspectives in microRNAs (miRNA). Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8533-8_11

Download citation

Publish with us

Policies and ethics