Skip to main content

Role of mir-302 MicroRNA Family in Stem Cell Pluripotency and Renewal

  • Chapter
Current Perspectives in microRNAs (miRNA)

Abstract Recent research in human embryonic stem (hES) cells has shown a highly promising potential in transplantation therapy. Nevertheless, it is very difficult to maintain the purity and pluripotency of these hES cells. In a fertilized egg, maternal materials naturally maintain stem cell renewal and totipotency before the 128-cell stage of embryonic development. Mouse oocytes lacking Dicer, a conserved ribonuclease required for microRNA (miRNA) biogenesis, arrest in the division phase of meiosis I, indicating that miRNAs play a critical role in oogenesis. We have observed that mir-302 familial microRNAs (mir-302s) were expressed at extremely high levels in mouse oocytes and human embryonic stem cells, and gradually decreased after cell differentiation. Therefore, we proposed that the mir-302 family is one of the key maternal materials essential for maintenance and renewal of the hES cell pluripotency. For this, we developed a Pol-II-based intronic miRNA expression system to transgenically express the mir-302s in several human epidermal and cancerous cell lines. Surprisingly, these mir-302s-transfected cells, namely miRNA-induced pluripotent stem (mirPS) cells, were shown to not only express all sorts of hES markers, such as Oct3/4, SSEA-3, SSEA-4, Sox2 and Nanog, but also have a highly demethylated genome similar to the reprogrammed genome of a fertilized egg. Microarray analyses further revealed that genome-wide gene expression patterns of these mirPS cells shared over 86% similarity with those of hES H1 and H9 cell lines. With certain molecular guidance ex vivo, these mirPS cells could differentiate into distinct tissue cell types, such as neuron-, chondrocyte-, fibroblast- and spermatogonia-like primordial cells. Based on these findings, we suggest that the function of mir-302s is able to not only maintain the hES cell renewal and pluripotency but also to reprogram differentiated cells into a hES-like pluripotent state, which may provide insights into areas of opportunity for therapeutic intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, Guenther MG, Kumar RM, Murray HL, Jenner RG, Gifford DK, Melton DA, Jaenisch R, Young RA. (2005) Cell 122: 947-956.

    Article  CAS  PubMed  Google Scholar 

  2. Chung KH, Hart CC, Al-Bassam S, Avery A, Taylor J, Patel PD, Vojtek AB, Turner DL. (2006) Polycistronic RNA polymerase II expression vectors for RNA interference based on BIC/miR-155. Nucleic Acid Res. 34: e53.

    Article  PubMed  Google Scholar 

  3. Danin-Kreiselman M, Lee CY, Chanfreau G. (2003) RNAse III-mediated degradation of unspliced pre-mRNA and lariat introns. Mol. Cell 11: 1279-1289.

    Article  CAS  PubMed  Google Scholar 

  4. Ghosh S, Garcia-Blanco MA. (2000) Coupled in vitro synthesis and splicing of RNA polymer-ase II transcripts. RNA 6: 1325-1334.

    Article  CAS  PubMed  Google Scholar 

  5. Giraldez AJ, Mishima Y, Rihel J, Grocock RJ, Van Dongen S, Inoue K, Enright AJ, Schier AF. (2006) Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 312: 75-79.

    Article  CAS  PubMed  Google Scholar 

  6. Hanna J, Wernig M, Markoulaki S, Sun CW, Meissner A, Cassady JP, Beard C, Brambrink T, Wu LC, Townes TM, Jaenisch R. (2007) Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 318: 1920-1923.

    Article  CAS  PubMed  Google Scholar 

  7. Harikrishnan KN, Chow MZ, Baker EK, Pal S, Bassal S, Brasacchio D, Wang L, Craig JM, Jones PL, Sif S, El-Osta A. (2005) Brahma links the SWI/SNF chromatin-remodeling complex with MeCP2-dependent transcriptional silencing. Nat. Genet. 37: 254-64.

    Article  CAS  PubMed  Google Scholar 

  8. Hochedlinger K, Jaenisch R. (2006) Nuclear reprogramming and pluripotency. Nature 441: 1061-1067.

    Article  CAS  PubMed  Google Scholar 

  9. Jiang J, Au M, Lu K, Eshpeter A, Korbutt G, Fisk G, Majumdar AS. (2007) Generation of insulin-producing islet-like clusters from human embryonic stem cells. Stem Cell 25: 1940-1953.

    Article  CAS  Google Scholar 

  10. Lin SL, Chang D, Wu DY, Ying SY. (2003) A novel RNA splicing-mediated gene silencing mechanism potential for genome evolution. Biochem. Biophys. Res. Commun. 310: 754-760.

    Article  CAS  PubMed  Google Scholar 

  11. Lin SL, Ying SY. (2004) Novel RNAi therapy - intron-derived microRNA drugs. Drug Design Rev. 1: 247-255.

    Article  CAS  Google Scholar 

  12. Lin SL, Chang D, Ying SY. (2005) Asymmetry of intronic pre-microRNA structures in func-tional RISC assembly. Gene 356: 32-38.

    Article  CAS  PubMed  Google Scholar 

  13. Lin SL, Ying SY. (2006a) Gene silencing in vitro and in vivo using intronic microRNAs. Shao-Yao Ying (Ed.) MicroRNA protocols. pp295-312, Humana press, Totowa, NJ.

    Chapter  Google Scholar 

  14. Lin SL, Chang SJE, Ying SY. (2006b) Transgene-like animal model using intronic microR-NAs. Methods Mol. Biol. 342: 321-334.

    CAS  Google Scholar 

  15. Lin SL, Chang D, Ying SY. (2007) Hyaluronan stimulates transformation of androgen-independent prostate cancer. Carcinogenesis 28: 310-320.

    Article  CAS  PubMed  Google Scholar 

  16. Lin SL, Kim H, Ying SY. (2008) Intron-mediated RNA interference and microRNA (miRNA). Front. Biosci. 13: 2216-2230.

    Article  CAS  PubMed  Google Scholar 

  17. Meissner A, Jaenisch R. (2006) Generation of nuclear transfer-derived pluripotent ES cells from cloned Cdx2-deficient blastocysts. Nature 439: 212-215.

    Article  CAS  PubMed  Google Scholar 

  18. Murchison EP, Stein P, Xuan Z, Pan H, Zhang MQ, Schultz RM, Hannon GJ. (2007) Critical roles for Dicer in the female germline. Genes Dev. 21: 682-693.

    Article  CAS  PubMed  Google Scholar 

  19. O’Farrell PH, Stumpff J, Su TT. (2004) Embryonic cleavage cycles: how is a mouse like a fly? Curr. Biol. 14: R35-R45.

    PubMed  Google Scholar 

  20. Okita K, Ichisaka T, Yamanaka S. (2007) Generation of germline-competent induced pluripo-tent stem cells. Nature 448: 313-317.

    Article  CAS  PubMed  Google Scholar 

  21. Park IH, Zhao R, West JA, Yabuuchi A, Huo H, Ince TA, Lerou PH, Lensch MW, Daley GQ. (2008) Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451: 141-146.

    Article  CAS  PubMed  Google Scholar 

  22. Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A. (2004) Identification of mammalian microRNA host genes and transcription units. Genome Res. 14: 1902-1910.

    Article  CAS  PubMed  Google Scholar 

  23. Rosner MH, Vigano MA, Ozato K, Timmons PM, Poirier F, Rigby PW, Staudt LM. (1990) A POU-domain transcription factor in early stem cells and germ cells of the mammalian embryo. Nature 345: 686-692.

    Article  CAS  PubMed  Google Scholar 

  24. Ruby JG, Jan CH, Bartel DP. (2007) Intronic microRNA precursors that bypass Drosha processing. Nature 448: 83-86.

    Article  CAS  PubMed  Google Scholar 

  25. Schöler HR, Hatzopoulos AK, Balling R, Suzuki N, Gruss P. (1989) A family of octamer-specific proteins present during mouse embryogenesis: evidence for germline-specific expres-sion of an Oct factor. EMBO J. 8: 2543-2550.

    PubMed  Google Scholar 

  26. Shevinsky LH, Knowles BB, Damjanov I, Solter D. (1982) Monoclonal antibody to murine embryos defines a stage-specific embryonic antigen expressed on mouse embryos and human teratocarcinoma cells. Cell 30: 697-705.

    Article  CAS  PubMed  Google Scholar 

  27. Solter D, Knowles BB. (1978) Monoclonal antibody defining a stage-specific mouse embry-onic antigen (SSEA-1). Proc. Natl. Acad. Sci. USA 75: 5565-5569.

    Article  CAS  PubMed  Google Scholar 

  28. Stitzel ML, Seydoux G. (2007) Regulation of the oocyte-to-zygote transition. Science 316: 407-408.

    Article  CAS  PubMed  Google Scholar 

  29. Suh MR, Lee Y, Kim JY, Kim SK, Moon SH, Lee JY, Cha KY, Chung HM, Yoon HS, Moon SY, Kim VN, Kim KS. (2004) Human embryonic stem cells express a unique set of microR-NAs. Dev. Biol. 270: 488-498.

    Article  CAS  PubMed  Google Scholar 

  30. Takahashi K, Yamanaka S. (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126: 663-676.

    Article  CAS  PubMed  Google Scholar 

  31. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131: 861-872.

    Article  CAS  PubMed  Google Scholar 

  32. Tang F, Kaneda M, O’Carroll D, Hajkova P, Barton SC, Sun YA, Lee C, Tarakhovsky A, Lao K, Surani MA. (2007) Maternal microRNAs are essential for mouse zygotic development. Genes Dev. 21: 644-648.

    Article  CAS  PubMed  Google Scholar 

  33. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM. (1998) Embryonic stem cell lines derived from human blastocysts. Science 282: 1145-1147.

    Article  CAS  PubMed  Google Scholar 

  34. Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hochedlinger K, Bernstein BE, Jaenisch R. (2007) In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448: 318-324.

    Article  CAS  PubMed  Google Scholar 

  35. Ye P, D’Ercole AJ. (2006) Insulin-like growth factor actions during development of neural stem cells and progenitors in the central nervous system. J. Neurosci. Res. 83: 1-6.

    Article  CAS  PubMed  Google Scholar 

  36. Ying SY, Lin SL. (2004) Intron-derived microRNAs - fine tuning of gene functions. Gene 342: 25-28.

    Article  CAS  PubMed  Google Scholar 

  37. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA. (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318: 1917-1920.

    Article  CAS  PubMed  Google Scholar 

  38. Zhou HSL, Xia XG, Xu Z. (2005) An RNA polymerase II construct synthesizes short hairpin RNA with a quantitative indicator and mediates high efficient RNAi. Nucleic Acid Res. 33: e62.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Lin, SL., Ying, SY. (2008). Role of mir-302 MicroRNA Family in Stem Cell Pluripotency and Renewal. In: Ying, SY. (eds) Current Perspectives in microRNAs (miRNA). Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8533-8_10

Download citation

Publish with us

Policies and ethics