Structures of MicroRNA Precursors

  • Piotr Kozlowski
  • Julia Starega-Roslan
  • Marta Legacz
  • Marcin Magnus
  • Wlodzimierz J. Krzyzosiak

MicroRNAs are single-stranded regulatory RNAs of 18–25 nucleotide length generated from endogenous transcripts that form local hairpin structures. The processing of microRNA transcripts involves the activities of two RNase III enzymes Drosha and Dicer. In this study we analyzed structural features of human microRNA precursors that make these transcripts Drosha and Dicer substrates. The structures of minimal functional primary precursors (pri-microRNAs) and secondary precursors (pre-microRNAs) were predicted. The frequency, nucleotide sequence content and the localization of various structure destabilizing motifs was analyzed. We identified numerous pri-microRNAs which structures strongly depart from the consensus structure and their processing is hard to explain by the existing model of the Microprocessor complex. We also found a biased distribution of symmetric and asymmetric motifs along the pre-microRNA hairpin stem and an over-representation of bulges on its 5′ arm (p < 0.000001), which may have considerable functional implications.


miRNA biogenesis Dicer Drosha RNA structure prediction pri-miRNAs pre-miRNA structural motifs 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281-297.CrossRefPubMedGoogle Scholar
  2. 2.
    Basyuk, E., Suavet, F., Doglio, A., Bordonne, R., and Bertrand, E. (2003). Human let-7 stem-loop precursors harbor features of RNase III cleavage products. Nucleic Acids Res 31, 6593-6597.CrossRefPubMedGoogle Scholar
  3. 3.
    Bernstein, E., Caudy, A. A., Hammond, S. M., and Hannon, G. J. (2001). Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363-366.CrossRefPubMedGoogle Scholar
  4. 4.
    Borchert, G. M., Lanier, W., and Davidson, B. L. (2006). RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol 13, 1097-1101.CrossRefPubMedGoogle Scholar
  5. 5.
    Denli, A. M., Tops, B. B., Plasterk, R. H., Ketting, R. F., and Hannon, G. J. (2004). Processing of primary microRNAs by the microprocessor complex. Nature 432, 231-235.CrossRefPubMedGoogle Scholar
  6. 6.
    Gregory, R. I., Chendrimada, T. P., Cooch, N., and Shiekhattar, R. (2005). Human RISC cou-ples microRNA biogenesis and posttranscriptional gene silencing. Cell 123, 631-640.CrossRefPubMedGoogle Scholar
  7. 7.
    Gregory, R. I., Yan, K. P., Amuthan, G., Chendrimada, T., Doratotaj, B., Cooch, N., and Shiekhattar, R. (2004). The microprocessor complex mediates the genesis of microRNAs. Nature 432, 235-240.CrossRefPubMedGoogle Scholar
  8. 8.
    Griffiths-Jones, S., Grocock, R. J., van Dongen, S., Bateman, A., and Enright, A. J. (2006). miR-Base: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34, D140-144.CrossRefPubMedGoogle Scholar
  9. 9.
    Han, J., Lee, Y., Yeom, K. H., Nam, J. W., Heo, I., Rhee, J. K., Sohn, S. Y., Cho, Y., Zhang, B. T., and Kim, V. N. (2006). Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 125, 887-901.CrossRefPubMedGoogle Scholar
  10. 10.
    Huang, T. H., Fan, B., Rothschild, M. F., Hu, Z. L., Li, K., and Zhao, S. H. (2007). MiRFinder: an improved approach and software implementation for genome-wide fast microRNA precur-sor scans. BMC Bioinformatics 8, 341.CrossRefPubMedGoogle Scholar
  11. 11.
    Jiang, P., Wu, H., Wang, W., Ma, W., Sun, X., and Lu, Z. (2007). MiPred: classification of real and pseudo microRNA precursors using random forest prediction model with combined fea-tures. Nucleic Acids Res 35, W339-344.CrossRefPubMedGoogle Scholar
  12. 12.
    Kim, V. N., and Nam, J. W. (2006). Genomics of microRNA. Trends Genet 22, 165-173.CrossRefPubMedGoogle Scholar
  13. 13.
    Krol, J., Sobczak, K., Wilczynska, U., Drath, M., Jasinska, A., Kaczynska, D., and Krzyzosiak, W. J. (2004). Structural features of microRNA (miRNA) precursors and their rel-evance to miRNA biogenesis and small interfering RNA/short hairpin RNA design. J Biol Chem 279, 42230-42239.CrossRefPubMedGoogle Scholar
  14. 14.
    Krol, J., Starega-Roslan, J., Milanowska, K., Nowak, D., Kubiaczyk, E., Nowak, M., Majorek, K., Kaminska, K., and Krzyzosiak, W. J. (2006). Structural Features of microRNAs and Their Precursors, In microRNA: Biology, Function & Expression, N. Clarke, and P. Sanseau, eds. (DNA Press), Eagleville, PA, pp. 95-110.Google Scholar
  15. 15.
    Lai, E. C., Tomancak, P., Williams, R. W., and Rubin, G. M. (2003). Computational identifica-tion of Drosophila microRNA genes. Genome Biol 4, R42. CrossRefPubMedGoogle Scholar
  16. 16.
    Landgraf, P., Rusu, M., Sheridan, R., Sewer, A., Iovino, N., Aravin, A., Pfeffer, S., Rice, A., Kamphorst, A. O., Landthaler, M., et al. (2007). A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129, 1401-1414.CrossRefPubMedGoogle Scholar
  17. 17.
    Landthaler, M., Yalcin, A., and Tuschl, T. (2004). The human DiGeorge syndrome critical region gene 8 and its D. melanogaster homolog are required for miRNA biogenesis. Curr Biol 14, 2162-2167.CrossRefPubMedGoogle Scholar
  18. 18.
    Lee, Y., Ahn, C., Han, J., Choi, H., Kim, J., Yim, J., Lee, J., Provost, P., Radmark, O., Kim, S., and Kim, V. N. (2003). The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415-419.CrossRefPubMedGoogle Scholar
  19. 19.
    Lee, Y., Kim, M., Han, J., Yeom, K. H., Lee, S., Baek, S. H., and Kim, V. N. (2004). MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23, 4051-4060.CrossRefPubMedGoogle Scholar
  20. 20.
    Lewis, B. P., Burge, C. B., and Bartel, D. P. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15-20.CrossRefPubMedGoogle Scholar
  21. 21.
    Lim, L. P., Glasner, M. E., Yekta, S., Burge, C. B., and Bartel, D. P. (2003). Vertebrate micro-RNA genes. Science 299, 1540.CrossRefPubMedGoogle Scholar
  22. 22.
    Lund, E., Guttinger, S., Calado, A., Dahlberg, J. E., and Kutay, U. (2004). Nuclear export of microRNA precursors. Science 303, 95-98.CrossRefPubMedGoogle Scholar
  23. 23.
    Macrae, I. J., Zhou, K., and Doudna, J. A. (2007). Structural determinants of RNA recognition and cleavage by Dicer. Nat Struct Mol Biol 14, 934-940.CrossRefPubMedGoogle Scholar
  24. 24.
    Macrae, I. J., Zhou, K., Li, F., Repic, A., Brooks, A. N., Cande, W. Z., Adams, P. D., and Doudna, J. A. (2006). Structural basis for double-stranded RNA processing by Dicer. Science 311, 195-198.CrossRefPubMedGoogle Scholar
  25. 25.
    Pillai, R. S., Bhattacharyya, S. N., Artus, C. G., Zoller, T., Cougot, N., Basyuk, E., Bertrand, E., and Filipowicz, W. (2005). Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science 309, 1573-1576.CrossRefPubMedGoogle Scholar
  26. 26.
    Provost, P., Dishart, D., Doucet, J., Frendewey, D., Samuelsson, B., and Radmark, O. (2002). Ribonuclease activity and RNA binding of recombinant human Dicer. EMBO J 21, 5864-5874.CrossRefPubMedGoogle Scholar
  27. 27.
    Ritchie, W., Legendre, M., and Gautheret, D. (2007). RNA stem-loops: to be or not to be cleaved by RNAse III. RNA 13, 457-462.CrossRefPubMedGoogle Scholar
  28. 28.
    Saetrom, P., Snove, O., Nedland, M., Grunfeld, T. B., Lin, Y., Bass, M. B., and Canon, J. R. (2006). Conserved microRNA characteristics in mammals. Oligonucleotides 16, 115-144.CrossRefPubMedGoogle Scholar
  29. 29.
    Sewer, A., Paul, N., Landgraf, P., Aravin, A., Pfeffer, S., Brownstein, M. J., Tuschl, T., van Nimwegen, E., and Zavolan, M. (2005). Identification of clustered microRNAs using an ab initio prediction method. BMC Bioinformatics 6, 267.CrossRefPubMedGoogle Scholar
  30. 30.
    Sheng, Y., Engstrom, P. G., and Lenhard, B. (2007). Mammalian MicroRNA prediction through a support vector machine model of sequence and structure. PLoS ONE 2, e946.CrossRefPubMedGoogle Scholar
  31. 31.
    Wang, X., Zhang, J., Li, F., Gu, J., He, T., Zhang, X., and Li, Y. (2005). MicroRNA identifica-tion based on sequence and structure alignment. Bioinformatics 21, 3610-3614.CrossRefPubMedGoogle Scholar
  32. 32.
    Xue, C., Li, F., He, T., Liu, G. P., Li, Y., and Zhang, X. (2005). Classification of real and pseudo microRNA precursors using local structure-sequence features and support vector machine. BMC Bioinformatics 6, 310.CrossRefPubMedGoogle Scholar
  33. 33.
    Yekta, S., Shih, I. H., and Bartel, D. P. (2004). MicroRNA-directed cleavage of HOXB8 mRNA. Science 304, 594-596.CrossRefPubMedGoogle Scholar
  34. 34.
    Zhang, H., Kolb, F. A., Brondani, V., Billy, E., and Filipowicz, W. (2002). Human Dicer preferentially cleaves dsRNAs at their termini without a requirement for ATP. EMBO J 21, 5875-5885.CrossRefPubMedGoogle Scholar
  35. 35.
    Zhang, H., Kolb, F. A., Jaskiewicz, L., Westhof, E., and Filipowicz, W. (2004). Single processing center models for human Dicer and bacterial RNase III. Cell 118, 57-68.CrossRefPubMedGoogle Scholar
  36. 36.
    Zuker, M. (2003). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31, 3406-3415.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • Piotr Kozlowski
    • 1
  • Julia Starega-Roslan
    • 1
  • Marta Legacz
    • 1
  • Marcin Magnus
    • 1
  • Wlodzimierz J. Krzyzosiak
    • 1
  1. 1.Laboratory of Cancer Genetics, Institute of Bioorganic ChemistryPolish Academy of SciencePoznanPoland

Personalised recommendations