Skip to main content

Thermoreversible Crosslinking of Silicones Using Acceptor-Donor Interactions

  • Conference paper
Silicon Based Polymers

Abstract

Partial charge transfer between donor and acceptor groups has been used as a tool to physically structure silicone materials. In a first part, interactions between a single donor molecule, i.e. 9H-carbazole-9-ethanol, and a poly(dimethylsiloxane) functionalized on both chain-ends by acceptor groups, i.e. 3,5-dinitrobenzoate, were studied by DSC and UV-Vis analysis. The thermoreversibility of the interactions was likely demonstrated by UV-Vis analyses, which also showed a most favourable association of the complex for a 1/1 stoechiometry. The second part of this work deals with the synthesis of a triblock copolymer poly (2-(N-carbazolyl) ethyl methacrylate)-b-poly(dimethylsiloxane)-b-poly(2-(N-carbazolyl) ethyl methacrylate) by atom transfer radical polymerization in the presence of copper bromide and 1,1,4,7,10,10-hexamethyltriethylene tetramine in THF. The association of this triblock copolymer with the telechelic acceptor–based poly(dimethylsiloxane) used in the model study has been checked by rheology, which showed on heating and cooling a thermoreversible elastic/viscoelastic transition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hohberg T, Schaefer O, Mueller J et al. (2003) Textiles coated or finished with polysiloxane-polyurea-polyurethane block copolymers (Wacker-Chemie G.m.b.H., Germany) EP1336683.

    Google Scholar 

  2. Kuepfer J, Schaefer O. (2004) Polysiloxane-polyurea-polyurethane block copolymers and their preparation (Wacker-Chemie G.m.b.H., Germany) US2004254325.

    Google Scholar 

  3. Scheim U, Ziche W. (2006) Crosslinkable siloxane urea copolymers for molding compositions (Wacker-Chemie G.m.b.H., Germany) WO2006010486.

    Google Scholar 

  4. Schaefer O, Weis J, Delica S et al. (2004) Thermoplastic silicone elastomers. Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) 45:714–715.

    CAS  Google Scholar 

  5. Brunsveld L, Folmer BJB, Meijer EW et al. (2001) Supramolecular Polymers. Chem. Rev. (Washington, D. C.) 101:4071–4097.

    CAS  Google Scholar 

  6. Binder WH, Zirbs R. (2007) Supramolecular polymers and networks with hydrogen bonds in the main- and side-chain. Adv. Polym. Sci. 207:1–78.

    Article  CAS  Google Scholar 

  7. Bouteiller L. (2007) Assembly via hydrogen bonds of low molar mass compounds into supramolecular polymers. Adv. Polym. Sci. 207:79–112.

    Article  CAS  Google Scholar 

  8. ten Brinke G, Ruokolainen J, Ikkala O. (2007) Supramolecular materials based on hydrogen-bonded polymers. Adv. Polym. Sci. 207:113–177.

    Article  Google Scholar 

  9. Kozakiewicz J. (1998) Siloxane oligomer diols as potential intermediates for novel durable coatings. Surf. Coat. Int. 81:435–439.

    Article  CAS  Google Scholar 

  10. Kozakiewicz J. (1996) Polysiloxaneurethanes: new polymers for potential coating applications. Prog. Org. Coat. 27:123–131.

    Article  CAS  Google Scholar 

  11. Yilgor E, Tulpar A, Kara S et al. (2000) High strength silicone-urethane copolymers: synthesis and properties. ACS Symp. Ser. 729:395–407.

    Article  CAS  Google Scholar 

  12. Tyagi D, Wilkes GL, Yilgor I et al. (1982) Siloxane-urea segmented copolymers. 2. Investigation of mechanical behavior. Polym. Bull. (Berlin) 8:543–550.

    Article  CAS  Google Scholar 

  13. Yilgor I, Riffle JS, Wilkes GL et al. (1982) Siloxane-urea segmented copolymers. 1. Synthesis and characterization of model polymers from MDI and α,ω-bis(aminopropyl)polydimethylsiloxane. Polym. Bull. (Berlin) 8:535–542.

    Article  CAS  Google Scholar 

  14. Yilgor E, Yilgor I. (2001) Hydrogen bonding: a critical parameter in designing silicone copolymers. Polymer, 42:7953–7959.

    Article  CAS  Google Scholar 

  15. Yilgor E, Ekin Atilla G, Ekin A et al. (2003) Isopropyl alcohol: an unusual, powerful, green’ solvent for the preparation of silicone-urea copolymers with high urea contents. Polymer 44:7787–7793.

    Article  CAS  Google Scholar 

  16. Sheth JP, Aneja A, Wilkes GL et al. (2004) Influence of system variables on the morphological and dynamic mechanical behavior of polydimethylsiloxane based segmented polyurethane and polyurea copolymers: a comparative perspective. Polymer 45:6919–6932.

    Article  CAS  Google Scholar 

  17. Colombani O, Barioz C, Bouteiller L et al. (2005) Attempt toward 1D cross-linked thermoplastic elastomers: structure and mechanical properties of a new system Macromolecules 38:1752–1759.

    Article  CAS  Google Scholar 

  18. Simionescu CI, Grigoras M. (1991) Macromolecular donor-acceptor complexes. Prog. Polym. Sci. 16:907–976.

    Article  CAS  Google Scholar 

  19. Rodriguez-Parada JM, Percec V. (1986) Interchain electron donor-acceptor complexes: a model to study polymer-polymer miscibility? Macromolecules 19:55–64.

    Article  CAS  Google Scholar 

  20. Simmons A, Natansohn A. (1991) Solid-state NMR study of charge-transfer interactions in polymer blends. Macromolecules 24:3651–3661.

    Article  CAS  Google Scholar 

  21. Pugh C, Rodriguez-Parada JM, Percec V. (1986) The influence of molecular weight of the donor polymer on the solid-state behavior of interchain EDA complexes. J. Polym. Sci. Part A: Polym. Chem. 24:747–758.

    Article  CAS  Google Scholar 

  22. Schneider HA, Cantow HJ, Massen U et al. (1982) Donor-acceptor complexation in macro-molecular systems. 2. Synthesis and viscoelastic properties of donor-acceptor complexed poly(methyl methacrylate)s and poly(butyl methacrylate)s. Polym. Bull. (Berlin, Germany) 7:263–270.

    CAS  Google Scholar 

  23. Schneider HA, Cantow HJ, Percec V. (1982) Donor-acceptor complexation in macromolecular systems. 1. Viscoelastic properties of polydonor-polyacceptor blends and of corresponding copolymers. Polym. Bull. (Berlin, Germany) 6:617–621.

    CAS  Google Scholar 

  24. Schneider HA, Cantow HJ, Percec V. (1982) Viscoelastic properties of poly-donor-poly-acceptor blends and of corresponding copolymers. Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) 23:203–204.

    CAS  Google Scholar 

  25. Zentel R, Wu J, Cantow HJ. (1985) Influence of electron-donor-acceptor complex formation on the melt viscosity of some poly(dimethylsiloxane)s. Makromol. Chem. 186:1763–1772.

    Article  CAS  Google Scholar 

  26. Cojocariu G, Natansohn A. (2003) Perturbation of Charge-Transfer Complexes in Aqueous Solutions of PEG-DNB by Adding N-Ethylcarbazole and Li+ Cations. J. Phys. Chem. 107:5658–5665.

    CAS  Google Scholar 

  27. Zeng F, Shen Y, Zhu S, Pelton R. (2000) Synthesis and Characterization of Comb-Branched Polyelectrolytes. 1. Preparation of Cationic Macromonomer of 2-(Dimethylamino)ethyl Methacrylate by Atom Transfer Radical Polymerization. Macromolecules 33:1628–1635.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Ganachaud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this paper

Cite this paper

Pouget, E., Ganachaud, F., Boutevin, B. (2008). Thermoreversible Crosslinking of Silicones Using Acceptor-Donor Interactions. In: Ganachaud, F., Boileau, S., Boury, B. (eds) Silicon Based Polymers. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8528-4_7

Download citation

Publish with us

Policies and ethics