Organosilica Mesoporous Materials with Double Functionality: Amino Groups and β-Cyclodextrin Synthesis and Properties

  • Stéphanie Willai
  • Maryse Bacquet
  • Michel Morcellet

Abstract

Our work concerns the preparation of new organofunctional mesoporous silica gels. The goal of this study is to combine in a unique material –on one hand β-cyclodextrin β-CD), able to form stable inclusion complexes with many organic molecules, – and on the other hand aminogroups (from aminopropylsilane precursor) which are likely to chelate metallic cations. At the same time the formation of a mesoporous silica network would improve and regulate the access to functional sites. In order to tailor the functionalities content of our materials, a preparation in two steps has been chosen. First, a new silica precursor β-CDAPS) has been synthesized from a β-CD derivative and (3-aminopropyl) trimethoxysilane (APS). A detailed characterization of the obtained product has helped to determine the structure of β-CDAPS repeating unit and quantify its functionality. Then this hybrid precursor has been co-condensed with tetraethylorthosilicate (TEOS) via a sol-gel process involving the use of surfactants by a S-I+ mechanism. Porous and chemical structures of a series of these functional mesoporous silicas were characterized. Finally, preliminary adsorption tests of aqueous model pollutants, carried out on these hybrid materials, have been discussed.

Keywords

Surfactant ThermoGravimetric Analysis Oligosaccharide Cyclodextrin Propyl 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kresge C T, Leonowicz M E, Roth W J, Vartuli J C, Beck J S. (1992). Nature, 359:710.CrossRefGoogle Scholar
  2. 2.
    Beck J S, Vartuli J C, Leonowicz M E, Kresge C T et al. (1992). J Am Chem Soc, 114:10834.CrossRefGoogle Scholar
  3. 3.
    Fowler C E, Burkett S L, Mann S. (1997). Chem Commun:1769.Google Scholar
  4. 4.
    Macquarrie D J, Jackson D B, Mdoe J E. (1999). New J Chem, 23:539.CrossRefGoogle Scholar
  5. 5.
    Huh S, Wiench J W, Yoo J C, Pruski M, Lin V S Y. (2003). Chem Mater, 15:4247.Google Scholar
  6. 6.
    Yokoi T, Yoshitake H, Tatsumi T. (2003). Chem Mater, 15:4536.CrossRefGoogle Scholar
  7. 7.
    Yokoi T, Yoshitake H, Tatsumi T. (2004). J Mater Chem, 14:951.CrossRefGoogle Scholar
  8. 8.
    Yokoi T, Yoshitake H, Yamada T, Kubota Y, Tatsumi T. (2006). J Mater Chem, 16:1125.CrossRefGoogle Scholar
  9. 9.
    Huq R, Mercier L, Kooyman P J. (2001). Chem Mater, 13:4512.CrossRefGoogle Scholar
  10. 10.
    Bibby A, Mercier L. (2003). Green Chem, 5:15.CrossRefGoogle Scholar
  11. 11.
    Sawicki R, Mercier L. (2006). Environ Sci Technol, 40:1978.Google Scholar
  12. 12.
    Liu C, Lambert J B, Fu L. (2003). J Am Chem Soc, 125:6452.CrossRefGoogle Scholar
  13. 13.
    Liu C, Wang J, Economy J. (2004). Macromol Rapid Commun, 25:863.CrossRefGoogle Scholar
  14. 14.
    Liu C, Lambert J B, Fu L. (2004). J Org Chem, 69:2213.CrossRefGoogle Scholar
  15. 15.
    Liu C, Naismith N, Economy J. (2004). J Chromatogr A, 1036:113.CrossRefGoogle Scholar
  16. 16.
    Brady B, Lynam N, O’Sullivan T, Ahern C, Darcy R. (2004). Org Syn Coll, 10:686.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Stéphanie Willai
    • 1
  • Maryse Bacquet
    • 1
  • Michel Morcellet
    • 1
  1. 1.Laboratoire de Chimie Organique et MacromoléculaireUMR CNRS 8009, Université des Sciences et Technologies de LilleVilleneuve d’ AscqFrance

Personalised recommendations