Skip to main content

Grafting β-Cyclodextrins to Silicone, Formulation of Emulsions and Encapsulation of Antifungal Drug

  • Conference paper
Silicon Based Polymers

Abstract

Emulsions of silicone polymers having β-cyclodextrin units as lateral chains have been prepared and used for the encapsulation of the antifungal drug griseofulvin. Such technology enables the formulation of active substances that are not soluble in water as dosage forms for topical administration.

Chemical grafting of monoallyl derivative of β-cyclodextrins to poly(methylhydrosiloxane) polymer or to poly(methylhydrosiloxane-co-dimethylsiloxane) copolymer through hydrosilylation reaction was investigated. Grafting of β-cyclodextrins to the Si-H units was limited by steric hindrance of the bulky cyclic D-heptaglucopyranoside. Therefore the kinetics of the grafting reaction slowed down dramatically as the conversion increased. The way to achieve high grafting rates was to run the grafting reaction for a very long time. The full conversion of the poly(methylhydrosiloxane) homopolymer could not be reached.

The grafted silicone polymers have been emulsified by the “spontaneous emulsification” method. The emulsification took advantage of the very low solubility of the polymers in water. Stable emulsions with sizes ranging between 200 and 500 nm have been produced.

The emulsions of β-cyclodextrins grafted on silicone could encapsulate the antifungal substance griseofulvin inside the β-cyclodextrin cavity by formation of inclusion complex. The encapsulation rate was limited to the 1:1 stoichiometry of the complex. Supplementary amount of griseofulvin slowly precipitated as crystalline particles in the aqueous phase.

There are several benefits of using a silicone polymer with grafted β–cyclodextrin units. The silicone backbone is biocompatible and adherent to the skin. Grafted β-cyclodextrin units enable the incorporation of griseofulvin in silicone oil. Lastly, the encapsulation of griseofulvin as inclusion complexes during the “spontaneous emulsification” process is quite easy. Let us recall that the formation of an inclusion complex of griseofulvin and the water-soluble β-cyclodextrin is a very difficult task owing to the low solubility of griseofulvin in water.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Benita, Ed., Microencapsulation. Methods and industrial applications, Marcel Dekker, NewYork (1996)

    Google Scholar 

  2. E. Finkelstein, B. Amichai, M.H. Grunwald, Int. J. Antimicrobial Agents 6 (1996) 189–194.

    Article  CAS  Google Scholar 

  3. I. Smirnova, M. Türk, R. Wischumerski, M.A. Wahl, Eng. Life Sci. 5 (2005) 277–280.

    Article  CAS  Google Scholar 

  4. P.H. Elworthy, F.J. Lipscomb, J. Pharm. Pharmacol. 20 (1968) 817–824.

    CAS  Google Scholar 

  5. A.A. Kassem, N.M. Mursi, Bull. Faculty Pharm. Cairo Univ. 9 (1970) 11–23.

    CAS  Google Scholar 

  6. P.H. Elworthy, M.S. Patel, J. Pharm. Pharmacol. 34 (1982) 543–546.

    CAS  Google Scholar 

  7. S. Tolle, T. Zuberi, W. Warisnoicharoen, M.J. Lawrence, J. Pharm. Sci. 89 (2000) 798–806.

    Article  CAS  Google Scholar 

  8. N.R. Calafato, G. Picó, Colloids Surfaces B 47 (2006) 198–204.

    Article  CAS  Google Scholar 

  9. D. Moinard-Checot, Y. Chevalier, S. Briançon, H. Fessi, S. Guinebretière, J. Nanosci. Nano-technol. 6 (2006) 2664–2681.

    CAS  Google Scholar 

  10. Z. Zili, S. Sfar, H. Fessi, Int. J. Pharm. 294 (2005) 261–267.

    Article  CAS  Google Scholar 

  11. J. Szejtli, Cyclodextrin technology, Kluwer Academic, Dordrecht (1988).

    Google Scholar 

  12. D. Duchêne, Ed., Cyclodextrins and their industrial uses; Éditions de la Santé, Paris (1987).

    Google Scholar 

  13. G. Wenz, Angew. Chem., Int. Ed. Engl. 33 (1994) 803–822.

    Article  Google Scholar 

  14. M.D. Veiga, P.J. Diaz, F. Ahsan, J. Pharm. Sci. 87 (1998) 891–900.

    Article  CAS  Google Scholar 

  15. M.D. Dhanaraju, K. Senthil Kumaran, T. Baskaran, M. Sree Rama Moorthy, Drug Develop. Ind. Pharm. 24 (1998) 583–587.

    Google Scholar 

  16. M. Skiba, C. Morvan, D. Duchêne, F. Puisieux, D. Wouessidjewe, Int. J. Pharm. 126 (1995) 275–279.

    Article  CAS  Google Scholar 

  17. M. Skiba, D. Duchêne, F. Puisieux, D. Wouessidjewe, Int. J. Pharm. 129 (1996) 113–121.

    Article  CAS  Google Scholar 

  18. M. Skiba, F. Nemati, F. Puisieux, D. Duchêne, D. Wouessidjewe, Int. J. Pharm. 145 (1996) 241–245.

    Article  CAS  Google Scholar 

  19. E. Lemos-Senna, D. Wouessidjewe, S. Lesieur, F. Puisieux, G. Couarraze, D. Duchêne, Pharm. Dev. Technol. 3 (1998) 85–94.

    Article  CAS  Google Scholar 

  20. A. Noomen, S. Hbaieb, H. Parrot-Lopez, R. Kalfat, H. Fessi, N. Amdouni, Y. Chevalier; Mater. Sci. Eng. C 28 (2008) 705–715.

    Article  CAS  Google Scholar 

  21. W.L. Epstein, V.P. Shah, S. Riegelman, Arch. Dermatol. 106 (1972) 344–348.

    Article  CAS  Google Scholar 

  22. W.L. Epstein, V.P. Shah, H.E. Jones, S. Riegelman, Arch. Dermatol. 111 (1975) 268–272.

    Article  Google Scholar 

  23. R. Aly, C.I. Bayles, R.A. Oakes, D.J. Bibel, H.I Maibach, Clin. Experim. Dermatol. 19 (1994) 43–46.

    Article  CAS  Google Scholar 

  24. A. Kowalewska, W.A. Stańczyk, S. Boileau, L. Lestel, J.D. Smith, Polymer 40 (1999) 813–818.

    Article  CAS  Google Scholar 

  25. J. Pfeiffer, V. Schurig, J. Chromatogr A 840 (1999) 145–150.

    Article  CAS  Google Scholar 

  26. A. Ruderisch, J. Pfeiffer, V. Schurig, Tetrahedron Asymmetry 12 (2001) 2025–2030.

    Article  CAS  Google Scholar 

  27. V. Schurig, S. Mayer, J. Biochem. Biophys. Methods 48 (2001) 117–141.

    Article  CAS  Google Scholar 

  28. H. Cousin, O. Trapp, V. Peulon-Agasse, X. Pannecoucke, L. Banspach, G. Trapp, Z. Jiang, J.C. Combret, V. Schurig, Eur. J. Org. Chem. (2003) 3273–3287.

    Google Scholar 

  29. E. Beyou, P. Babin, B. Bennetau, J. Dunogues, D. Teyssie, S. Boileau, J. Polym. Sci. A 32 (1994) 1673–1681.

    Article  CAS  Google Scholar 

  30. H. Touzi, Y. Chevalier, R. Kalfat, H. Ben Ouada, H. Zarrouk, J.-P. Chapel, N. Jaffrezic-Renault, Mater. Sci. Eng. C 26 (2006) 462–471.

    Article  CAS  Google Scholar 

  31. G. Yi, J.S. Bradshaw, B.E. Rossiter, A. Malik, W. Li, M.L. Lee, J. Org. Chem. 58 (1993) 4844–4850.

    Article  Google Scholar 

  32. G. Yi, J.S. Bradshaw, B.E. Rossiter, A. Malik, W. Li, H. Yun, M.L. Lee, J. Chromatogr. A 673 (1994) 219–230.

    Article  CAS  Google Scholar 

  33. V.V. Antić, M.P. Antić, M.N. Govedarica, P.R. Dvornić, J. Polym. Sci. A: Polym. Chem. 45 (2007) 2246–2258.

    Article  Google Scholar 

  34. P.J. Flory, Statistical mechanics of chain molecules, Wiley, New York (1969) p.175.

    Google Scholar 

  35. I. Montasser, S. Briançon, J. Lieto, H. Fessi, J. Pharm. Belg. 55 (2000) 155–167.

    CAS  Google Scholar 

  36. I. Montasser, H. Fessi, S. Briançon, J. Lieto, Brevets FR 2806005 (2000); US 2003059473 (2001); WO 0168235 (2001).

    Google Scholar 

  37. F. Ganachaud, J.L. Katz, Chem. Phys. Chem. 6 (2005) 209–216.

    CAS  Google Scholar 

  38. K. Shinoda, H. Kuneida, in Encyclodepia of emulsion technology, P. Becher, Ed., Marcel Dekker, New York (1983) Chap. 5, pp. 337–367.

    Google Scholar 

  39. P. Somasundaran, S.C. Mehta, P. Purohit, Adv. Colloid Interface Sci. 128–130 (2006) 103–109.

    Article  Google Scholar 

  40. S.A. Vitale, J.L. Katz, Langmuir 19 (2003) 4105–4110.

    Article  CAS  Google Scholar 

  41. V.M. Rao, M. Lin, C.K. Larive, M.Z. Southard, J. Pharm. Sci. 86 (1997) 1132–1137.

    Article  CAS  Google Scholar 

  42. L. Szente, Preparation of cyclodextrin complexes. In Comprehensive Supramolecular Chemistry, Elsevier, Oxford (1996) 3, 243–252.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this paper

Cite this paper

Noomen, A. et al. (2008). Grafting β-Cyclodextrins to Silicone, Formulation of Emulsions and Encapsulation of Antifungal Drug. In: Ganachaud, F., Boileau, S., Boury, B. (eds) Silicon Based Polymers. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8528-4_12

Download citation

Publish with us

Policies and ethics