New Avenues, New Outcomes: Nanoparticle Catalysis for Polymer Makeovers

  • Bhanu P. S. Chauhan
  • Bharathi Balagam
  • Jitendra S. Rathore
  • Alok Sarkar

Abstract

In this chapter, nanocluster catalyzed modifications of organic and silicon based polymers are described. The tailoring of the polymeric templates was carried out under mild conditions and led to hybrid polymers in quantitative yields. Detailed characterization studies indicated that the integrity of the polymeric templates was not compromised during the functionalization process. The nanoparticle catalysis was found to be quite effective and highly selective. In most cases exclusive β-hydrosilylation products were obtained without any rearrangement or isomerization reactions. Detailed characterization and property profiling of the new hybrid polymers is also presented.

Keywords

Silane Benzene Epoxy Palladium Vinyl 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    McGrath M P, Sall E D, Tremont S. (1995) Functionalization of polymers by metal-mediated processes. Chem Rev 95:381–198CrossRefGoogle Scholar
  2. 2.
    Whitesides G M, Mathias J P, Seto C T. (1991) Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. Science 254:1312–1319CrossRefGoogle Scholar
  3. 3.
    Brinker C, Scherer G. (1990) Sol–gel science: the physics and chemistry of sol– gel processing. Academic Press, New YorkGoogle Scholar
  4. 4.
    Theng B K G. (1979) Developments in soil science. Formation and properties of clay–polymer complexes. Elsevier, AmsterdamGoogle Scholar
  5. 5.
    Lan T, Kaviratna P D, Pinnavaia, T J. (1995) Mechanism of clay tactoid exfoliation in epoxy-clay nanocomposites. Chem Mater 7:2144–2150CrossRefGoogle Scholar
  6. 6.
    Giannelis E P, Krishnamoorti R, Manias E. (1999) Polymer-silicate nanocomposite: Model systems for confined polymers and polymer brushes, Adv Polym Sci 138:107–147.CrossRefGoogle Scholar
  7. 7.
    Schwab J J, Lichtenhan J D. (1998) Polyhedral oligomeric silsesquioxane (POSS)-based polymers. Appl Organomet Chem 12:707–713.CrossRefGoogle Scholar
  8. 8.
    Chauhan B P S, Rathore, J S, Chauhan M et al. (2003) Synthesis of polysiloxane stabilized palladium colloids and evidence of their participation in silaesterification reactions. J Am Chem Soc 125:2876–2877.Google Scholar
  9. 9.
    Chauhan B P S, Rathore, J S, Bandoo T. (2004) “Polysiloxane-Pd” Nanocomposites as recyclable chemoselective hydrogenation catalysts. J Am Chem Soc 126:8493–8500.CrossRefGoogle Scholar
  10. 10.
    Chauhan B P S, Rathore J S. (2005) Regioselectively synthesis of multifunctional hybrid polysiloxanes achieved by Pt-nanoclusters catalysis. J Am Chem Soc 127:5790–5791.Google Scholar
  11. 11.
    Chauhan B P S, Rathore J S. (May 16–20, 2006) Synthesis of Isolable Nanocluster Catalysts and Their Applications in Macromolecular Hydrosilylation Catalysis. 39th Silicon Symposium, Frankenmuth, MI USA, Abs. No. 300Google Scholar
  12. 12.
    Chauhan B P S, Balagam, B Raghunath M. (May 16–20, 2006) Silyl Functionalization: An Efficient Route for Polyolefin Modification 39th Silicon Symposium, Frankenmuth, MI USA, Abs. No. 254.Google Scholar
  13. 13.
    Chauhan B P S, Balagam B. (2006) Silyl Functionalization of Polyolefines. Macromolecules 39:2010–2012.Google Scholar
  14. 14.
    Iraqi A, Seth S, Vincent C A et al. (1992) Catalytic hydrosilylation of polybutadienes as a route to functional polymers. J Mater Chem 2:1057–1064CrossRefGoogle Scholar
  15. 15.
    Iraqi A, Cole-Hamilton D J. (1991) Polyketones via oxidation of polybutadienes catalysed by complexes of platinum (II). Polyhedron 10:993–995CrossRefGoogle Scholar
  16. 16.
    Gahagan M, Iraqi A, Cupertino D C et al. (1989) A high activity molybdenum containing epoxidation catalyst and its use in regioselective epoxidation of polybutadiene J Chem Soc Chem Commun issue 21:1688–1690CrossRefGoogle Scholar
  17. 17.
    Guo X, Farwaha R, Rempel G L. (1990) Catalytic hydrosilylation of diene-based polymers. 1. Hydrosilylation of Polybutadiene. Macromolecules 23:5047–5054CrossRefGoogle Scholar
  18. 18.
    Narayanan P, Clubley B G, Cole-Hamilton D J et al. (1991) Polycarboxylic acids via catalytic hydrocarboxylation of polybutadienes. J Chem Soc Chem Commun issue 22:1628–1629CrossRefGoogle Scholar
  19. 19.
    Lange J P, Schoon L, Villena A et al. (2004) Monolithic catalysts for the fixed-bed hydrogenation of polymers. Chem Commun issue 24:2864–2865CrossRefGoogle Scholar
  20. 20.
    Guo X and Rempel G L. (1992) Catalytic hydrosilylation of diene-based polymers. 2. Hydrosilylation of styrene-butadiene copolymer and nitrile-butadiene copolymer. Macromolecules 25:883–886CrossRefGoogle Scholar
  21. 21.
    Baum K, Baum J C, Ho T. (1998) Side-Loop Polymers Based on the Hydrosilylation of Polybutadiene. J Am Chem Soc 120:2993–2996CrossRefGoogle Scholar
  22. 22.
    Hempenius M A, Michelberger W, Moller M. (1997) Arborescent Graft Polybutadienes. Macromolecules 30:5602–5605.CrossRefGoogle Scholar
  23. 23.
    Kepczynski M, Lewandowska J, Romek M et al. (2007) Silicone nanocapsules templated inside the membranes of catanionic vesicles. Langmuir 23:7314–7320.CrossRefGoogle Scholar
  24. 24.
    Pinho R O, Radovanovic E, Torriani I L et al. (2004) Hybrid materials derived from divinylbenzene and cyclic siloxane. Eur Poly J 40:615–622CrossRefGoogle Scholar
  25. 25.
    Mu J, Liu Y, Zheng S. (2007) Inorganic–organic interpenetrating polymer networks involving polyhedral oligomeric silsesquioxane and poly(ethylene oxide). Polymer 48:1176–1184.CrossRefGoogle Scholar
  26. 26.
    Chien L–C, Cada G. (1994) Photo-Cross-Linkable and Optically Active Side-Chain Liquid-Crystalline Copolymers. Macromolecules 27:3721–3726.CrossRefGoogle Scholar
  27. 27.
    Coqueret X, Wegner G. (1991) Platinum-catalyzed hydrosilylation of allyl aryl ethers: kinetic investigation at moderately high dilution. Organometallics 10:3139–3145.CrossRefGoogle Scholar
  28. 28.
    Zhu Z, Einset A G, Yang Ch-Y et al. (1994) Synthesis of Polysiloxanes Bearing Cyclic Carbonate Side Chains. Dielectric Properties and Ionic Conductivities of Lithium Triflate Complexes. Macromolecules 27:4076–4079.CrossRefGoogle Scholar
  29. 29.
    Matisons J G, Provatas A. (1994) Characterization of Novel Cationic Aminohydroxysiloxanes. Macromolecules 27:3397–3405.CrossRefGoogle Scholar
  30. 30.
    Coqueret X, Lablache-Combier A, Loucheux C. (1988) Functionalization of polysiloxanes by esterification of pendant glycidic groups: Catalyzed reaction in N,N-dimethylformamide. Eur Poly J 24:1137–1143.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Bhanu P. S. Chauhan
    • 1
  • Bharathi Balagam
    • 2
  • Jitendra S. Rathore
    • 2
  • Alok Sarkar
    • 2
  1. 1.Engineered Nanomaterials Laboratory, Department of ChemistryWilliam Paterson UniversityWayneUSA
  2. 2.Engineered Nanomaterials Laboratory, Department of Chemistry and PhysicsWilliam Paterson UniversityWayneUSA

Personalised recommendations