Skip to main content

Sol-Gel Approaches in the Synthesis of Membrane Materials for Nanofiltration and Pervaporation

  • Conference paper
Sol-Gel Methods for Materials Processing

Abstract

Molecular separation using membranes is widely considered as an energy-efficient alternative for conventional industrial separation techniques. For the preparation of such membranes sol-gel technology is highly suitable. Using sol-gel techniques thin (50–100 nm) amorphous nanoporous layers having pore sizes in the micropore (<2 nm) or fine mesoporous (<5 nm) region can be prepared on a porous substrate. These layered porous systems, usually in tubular form, can be used for nanofiltration, pervaporation and gas separation applications. The application window is dependent on the material properties, such as the pore size and pore size distribution, the interfacial properties of the pores, and the defect density. The success of this technology in actual industrial applications strongly depends on reproducible large scale production of the sol-gel membranes and on a sufficient stability of the membranes with respect to flux and selectivity. In addition the production cost of the full membrane system is an important aspect. Here, we will focus on the more chemical aspects in the membrane preparation. Main topics are synthesis and properties of the sols, the preparation of microporous thin films, and the search for membrane materials that have a high hydrothermal stability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Asaeda, Sol-gel derived ceramic membranes for separation of molecular mixtures, Porous. Ceram. Mater., Conf. Proc. (2005).

    Google Scholar 

  2. J. F. Vente, H. M. van Veen, and P. P. A. C. Pex, Microporous sol-gel membranes for molecular separations, Ann. Chim. Sci. Mat. 32(2), 231-244 (2007).

    Article  CAS  Google Scholar 

  3. B. C. Bonekamp, A. van Horssen, L. A. Correia, J. F. Vente, and W. G. Haije, Macroporous support coatings for molecular separation membranes having a minimum defect density, J. Membr. Sci. 278(1-2), 349-356 (2006).

    Article  CAS  Google Scholar 

  4. P. P. A. C. Pex and Y. C. van Delft, in: Carbon dioxide capture for storage in deep geo-logical formations, 1 ed., edited by D. C. Thomas, and S. M. Benson (Elsevier, Amsterdam, 2005), pp. 307-319.

    Google Scholar 

  5. C. J. Brinker, Porous inorganic materials, Curr. Opin. Solid State Mater. Sci. 1, 798-805 (1996).

    Article  CAS  Google Scholar 

  6. H. M. van Veen, Y. C. van Delft, C. W. R. Engelen, and P. P. A. C. Pex, Dewatering of organics by pervaporation with silica membranes, Separ. Purif. Technol. 22-23, 361-366 (2001).

    Article  Google Scholar 

  7. C. J. Brinker, R. Sehgal, S. L. Hietala, R. Deshpande, D. M. Smith, D. A. Loy, and C. S. Ashley, Sol-gel strategies for controlled porosity inorganic materials, J. Membr. Sci. 94, 85-102 (1994).

    Article  CAS  Google Scholar 

  8. A. W. Burton and S. I. Zones, in: Introduction to zeolite science and practice, edited by J. Cejka, H. van Bekkum, A. Corma, and F. Schüth (Elsevier, Amsterdam, 2007), pp. 137-179.

    Chapter  Google Scholar 

  9. C. J. Brinker and G. W. Scherer, Sol-gel science - the physics and chemistry of sol-gel processing (Academic, New York, 1990).

    Google Scholar 

  10. C. J. Brinker, N. K. Raman, M. N. Logan, R. Sehgal, R. A. Assink, D.-W. Hua, and T. L. Ward, Structure-property relations in thin films and membranes, J. Sol-gel Sci. Technol. 4, 117-133 (1995).

    Article  CAS  Google Scholar 

  11. A. C. Pierre, Introduction to sol-gel processing (Kluwer, Dordrecht, The Netherlands, 1998).

    Google Scholar 

  12. A. J. Burggraaf, in: Fundamentals of inorganic membrane science and technology, edited by A. J. Burggraaf, and L. Cot (Elsevier, Amsterdam, 1996).

    Google Scholar 

  13. A. Rawle, The importance of particle sizing to the coatings industry Part 1: particle size measurement, Adv. Col. Sci. Technol. 5(1), 1-12 (2002).

    CAS  Google Scholar 

  14. C. J. Brinker, Review of sol-gel thin film formation, J. Non-cryst. Solids 147/148, 424-436 (1992).

    Article  Google Scholar 

  15. A. J. Hurd and L. Steinberg, The physics of evaporation-induced assembly of sol-gel materials, Granul Matter 3(1-2), 19-21 (2001).

    Article  CAS  Google Scholar 

  16. C. Nguyen, K. R. Carter, C. J. Hawker, R. L. Jaffe, R. D. Miller, J. F. Remenar, H.-W. Rhee, P. M. Rice, M. F. Toney, M. Trollsås, and D. Y. Yoon, Low-dielectric nanoporous organo-silicate films prepared via inorganic/organic polymer hybrid templates, Chem. Mater. 11, 3080-3085 (1999).

    Article  CAS  Google Scholar 

  17. G. Reiter, Dewetting of thin polymer films, Phys. Rev. Lett. 68, 75-82 (1992).

    Article  CAS  Google Scholar 

  18. R. M. de Vos and H. Verweij, High-selectivity, high-flux silica membranes for gas separation, Science 279, 1710-1711 (1998).

    Article  CAS  Google Scholar 

  19. B. C. Bonekamp, in: Fundamentals of inorganic membrane science and technology, Volume 4, edited by A. J. Burggraaf and L. Cot (Elsevier, Amsterdam, 1996).

    Google Scholar 

  20. B. E. Yoldas, Alumina gels that form porous transparent Al2O3, J. Mater. Sci. 10, 1856-1860 (1975).

    Article  CAS  Google Scholar 

  21. A. F. M. Leenaars, K. Keizer, and A. J. Burggraaf, The preparation and characterization of alumina membranes with ultra-fine pores, Part 1. Microstructural investigations on non supported membranes, J. Mater. Sci. 19, 1077 (1984).

    Article  CAS  Google Scholar 

  22. J. Sekuliü, A. Magraso, J. E. ten Elshof, and D. H. A. Blank, Influence of ZrO2 addition on microstructure and liquid permeability of mesoporous TiO2 membranes, Micropor. Mesopor. Mater. 72, 49-57 (2004).

    Article  Google Scholar 

  23. T. van Gestel, C. Vandecasteele, A. Buekenhoudt, C. Dotremont, J. Luyten, R. Leysen, B. van de Bruggen, and G. Maes, Alumina and titania multilayer membranes for nanofiltration: preparation, characterization and chemical stability, J. Membr. Sci. 207, 73-89 (2002).

    Article  Google Scholar 

  24. R. S. A. de Lange, K. Keizer, and A. J. Burggraaf, Aging and stability of microporous sol- gel-modified ceramic membranes, Ind. Eng. Chem. Res. 34, 3838-3847 (1995).

    Article  CAS  Google Scholar 

  25. R. J. Uhlhorn, Ceramic membranes for gas separation. Ph.D. thesis, University of Twente (1990).

    Google Scholar 

  26. R. M. de Vos and H. Verweij, Improved performance of silica membranes for gas separa- tion. J. Membr. Sci. 143, 37-51 (1998).

    Article  CAS  Google Scholar 

  27. C. J. Brinker, C. Y. Tsai, and Y. Lu, Inorganic dual-layer microporous supported mem- branes. US Patent 6,536,604 (2003).

    Google Scholar 

  28. T. A. Peters, J. Fontalvo, M. A. G. Vorstman, N. E. Benes, R. A. van Dam, Z. A. E. P. Vroon, E. L. J. van Soest-Vercammen, and J. T. F. Keurentjes, Hollow fiber microporous silica membranes for gas separation and pervaporation. Synthesis, performance and stability, J. Membr. Sci. 248, 73-80 (2004).

    Article  Google Scholar 

  29. R. M. de Vos, W. F. Maier, and H. Verweij, Hydrophobic silica membranes for gas separa- tion. J. Membr. Sci. 158(1-2), 277-288 (1999).

    Article  CAS  Google Scholar 

  30. J. Campaniello, C. W. R. Engelen, W. G. Haije, P. P. A. C. Pex, J. F. Vente, Long-term pervaporation performance of microporous methylated silica membranes, Chem. Commun. 834-835 (2004).

    Google Scholar 

  31. T. Tsuru, T. Hino, T. Yoshioka, and M. Asaeda, Permporometry characterisation of micro-porous ceramic membranes, J. Membr. Sci., 186(2), 257-265 (2001).

    Article  CAS  Google Scholar 

  32. K. J. Shea and D. A. Loy, Bridged polysilsesquioxanes, molecular-engineered hybrid organic- inorganic materials, Chem. Mater., 13, 3306-3319 (2001).

    Article  CAS  Google Scholar 

  33. H. L. Castricum, A. Sah, R. Kreiter, D. H. A. Blank, J. F. Vente, and J. E. ten Elshof, Hybrid organosilica membranes: molecular separation under hydrothermal conditions. (submitted) (2007).

    Google Scholar 

  34. A. Sah, Chemically modified ceramic membranes - study of structural and transport proper- ties. Ph.D. thesis, University of Twente (2006).

    Google Scholar 

  35. D. A. Loy, J. P. Carpenter, T. M. Alam, R. Shaltout, P. K. Dorhout, J. Greaves, J. H. Small, and K. J. Shea, Cyclization phenomena in the sol-gel polymerization of α,ω-bis(triethoxysilyl)alkanes and incorporation of the cyclic structures into network silsesquioxane polymers, J. Am. Chem. Soc., 121, 5413-5425 (1999).

    Article  CAS  Google Scholar 

  36. H. L. Castricum, R. Kreiter, J. F. Vente, and J. E. ten Elshof, to be published.

    Google Scholar 

  37. C. J. Brinker, W. L. Warren, and S. Wallace, in: Structure and imperfections in amorphous and crystalline silicon dioxide, edited by R. A. B. Devine, J.-P. Duraud, and E. Dooryhée (Wiley, Chichester, 2000), pp. 475-493.

    Google Scholar 

  38. R. M. van Ginhoven, H. Jónsson, B. Park, and L. R. Corrales, Cleavage and recovery of molecular water in silica, J. Phys. Chem. B, 109(21), 10936-10945 (2005).

    Article  Google Scholar 

  39. T. A. Michalske and B. C. A. Bunker, Chemical kinetics model for glass fracture, J. Am. Ceram. Soc., 76, 2613-2618 (1993).

    Article  CAS  Google Scholar 

  40. G. Dubois, W. Volksen, T. Magbitang, R. D. Miller, D. M. Gage, and R. H. Dauskardt, Molecular network reinforcement of sol-gel glasses, Adv. Mater., doi: 10.1002/adma.200701193 (2007).

    Google Scholar 

  41. G. I. Spijksma, Modification of zirconium and hafnium alkoxides - the effect of molecular structure on derived materials. Ph.D. thesis, University of Twente (2006).

    Google Scholar 

  42. G. A. Seisenbaeva, S. Gohil, and V. G. Kessler, Influence of heteroligands on the composi-tion, structure and properties of homo- an heteremetallic ziconium alkoxides. Decisive role of thermodynamic factors in their self-assembly, J. Mater. Chem., 21, 3177-3190 (2004).

    Article  Google Scholar 

  43. G. A. Seisenbaeva, S. Gohil, and V. G. Kessler, Molecular design approach to a highly soluble and volatile bimetallic alkoxide of late transition metal and zirconium. Synthesis, X-ray single crystal and mass-spectral study of NiZr2(acac)(OiPr)9, Inorg. Chem. Commun., 10, 94-96 (2007).

    CAS  Google Scholar 

  44. G. I. Spijksma, H. J. M. Bouwmeester, D. H. A. Blank, and V. G. Kessler, Stabilization and destabilization of zirconium propoxide precursor by acetylacetone, Chem. Commun., 1874-1875 (2004).

    Google Scholar 

  45. L. Armelao, C. Eisenmenger-Sittner, M. Groenewolt, S. Gross, C. Sada, U. Schubert, E. Tondello, and A. Zattin, Zirconium and hafnium oxoclusters as molecular building blocks for highly dispersed ZrO2 or HfO2 nanoparticles in silica thin films, J. Mater. Chem., 15, 1838-1848 (2005).

    Article  CAS  Google Scholar 

  46. U. Schubert, Organofunctional metal oxide clusters as building blocks for inorganic-organic hybrid materials, J. Sol-Gel Sci. Technol., 31, 19-24 (2004).

    Article  CAS  Google Scholar 

  47. J. Sekuliü, J. E. ten Elshof, and D. H. A. Blank, A microporous titania membrane for nano-filtration and pervaporation, Adv. Mater., 16(17), 1546-1550 (2004).

    Article  Google Scholar 

  48. S. E. Friberg and J. Sjöblom, in: Industrial applications of microemulsions, edited by C. Solans and H. Kunieda (Marcel Dekker, New York, 1997), pp. 267-277.

    Google Scholar 

  49. E. L. V. Goetheer, A. W. Verkerk, L. J. P. van den Broeke, E. de Wolf, B.-J. Deelman, G. van Koten, and J. T. F. Keurentjes, Membrane reactor for homogeneous catalysis in super-critical carbon dioxide, J. Catal., 219, 126-133 (2003).

    Article  CAS  Google Scholar 

  50. G. Garnweitner and M. Niederberger, Nonaqueous and surfactant-free synthesis routes to metal oxide nanoparticles, J. Am. Ceram. Soc., 89(6), 1801-1808 (2006).

    Article  CAS  Google Scholar 

  51. M. Niederberger, G. Garnweiter, F. Krumeich, R. Nesper, H. Cölfen, and M. Antonietti, Tailoring the surface and solubility properties of nanocrystalline titania by a nonaqueous in situ functionalization process, Chem. Mater., 16, 1202-1208 (2005).

    Article  Google Scholar 

  52. G. I. Spijksma, C. Huiskes, N. E. Benes, H. Kruidhof, D. H. A. Blank, V. G. Kessler, H. J. M. Bouwmeester, Microporous zirconia-titania composite membranes derived from diethanolamine-modified precursors, Adv. Mater., 18, 2165-2168 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaap F. Vente .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this paper

Cite this paper

Bonekamp, B.C., Kreiter, R., Vente, J.F. (2008). Sol-Gel Approaches in the Synthesis of Membrane Materials for Nanofiltration and Pervaporation. In: Innocenzi, P., Zub, Y.L., Kessler, V.G. (eds) Sol-Gel Methods for Materials Processing. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8514-7_3

Download citation

Publish with us

Policies and ethics