Skip to main content

Characterization of Gels and Networks Using New Calorimetric Techniques

  • Conference paper
Sol-Gel Methods for Materials Processing

Abstract

Recent developments of calorimetric techniques for the characterization of porous materials and gels are presented. In particular thermoporosimetry is introduced along with recent applications to soft materials like gels and polymers. In a second part, photo-DSC technique is presented with the new developments for the study of gels networks and photo-ageing of polymers. An overview of the potential of the two techniques towards sol-gel materials is finally given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Gibbs, Collected works, New Haven, CT: Yale University Press (1928).

    Google Scholar 

  2. W. Kunh, E. Peterli and H. Majer, Freezing point depression of gels produced by high polymer network, J. Polymer Sci., 16, 539 (1955).

    Article  Google Scholar 

  3. G. Fagerlund, Determination of pore-size distribution from freezing-point depression, Mater. Struct., 6(3), 215 (1973).

    Google Scholar 

  4. M. Brun, A. Lallemand, J.-F. Quinson and C. Eyraud, A new method for the simultaneous determination of the size and shape of pores: the thermoporometry, Thermochim. Acta, 21, 59 (1977).

    Article  CAS  Google Scholar 

  5. P. Gane, C. Ridgway, E. Lehtinen, R. Valiullin, I. Furo, J. Schoelkopf, H. Paulapuro and J. Daicic, Comparison of NMR cryoporometry, Mercury intrusion porosimetry, and DSC thermoporosimetry in characterizing pore size distributions of compressed finely ground calcium carbonate structures, Ind. Eng. Chem. Res., 43, 7920 (2004).

    Article  CAS  Google Scholar 

  6. E. Robens, B. Benzler and K.K. Unger, Comparison of sorptometric and thermoporometric measurements on porous glass and some others, J. Therm. Anal. Calorim., 56, 323 (1999).

    Article  CAS  Google Scholar 

  7. C.L. Jackson and G.B. McKenna, The melting behavior of organic materials confined in porous solids, J. Chem. Phys., 93(12), 9002 (1990).

    Article  CAS  Google Scholar 

  8. M. Wulff, Pore size determination by thermoporometry using acetonitrile, Thermochim. Acta, 419, 291 (2004).

    Article  CAS  Google Scholar 

  9. T. Takei, Y. Ooda, M. Fuji, T. Watanabe and M. Chikazawa, Anomalous phase transition behavior of carbon tetrachloride in silica pores, Thermochim. Acta, 199, 352-353 (2000).

    Google Scholar 

  10. B. Husár, S. Commereuc, L. Lukáþ, S. Chmela, J.M. Nedelec and M. Baba, Carbon tetra-chloride as a thermoporometry liquid probe to study the cross-linking of styrene copolymer networks, J. Phys. Chem. B, 110, 5315 (2006).

    Article  Google Scholar 

  11. N. Billamboz, M. Baba, M. Grivet and J.M. Nedelec, A general law for predictive use of thermoporosimetry as a tool for the determination of textural properties of divided media, J. Phys. Chem. B, 108, 12032 (2004).

    Article  CAS  Google Scholar 

  12. N. Bahloul, M. Baba and J.M. Nedelec, Universal behavior of linear alkanes in a confined medium: toward a calibrationless use of thermoporometry, J. Phys. Chem. B, 109, 16227 (2005).

    Article  CAS  Google Scholar 

  13. M. Baba, J.M. Nedelec, J. Lacoste, J.L. Gardette and M. Morel, Crosslinking of elastomers resulting from ageing: use of thermoporosimetry to characterise the polymeric network with n-heptane as condensate, Polym. Degrad. Stabil., 80(2), 305 (2003).

    Article  CAS  Google Scholar 

  14. M. Baba, J.M. Nedelec, J. Lacoste and J.L. Gardette, Calibration of cyclohexane solid-solid phase transition thermoporosimetry and application to the study of crosslinking of elastomers upon aging, J. Non-Cryst. Solids, 315, 228 (2003).

    Article  CAS  Google Scholar 

  15. M. Baba, J.M. Nedelec et al., unpublished results.

    Google Scholar 

  16. J.M. Nedelec, J.P.E. Grolier and M. Baba, Thermoporosimetry: a powerful tool to study the cross-linking in gels networks, J. Sol-Gel Sci. Tech., 40, 191 (2006).

    Article  CAS  Google Scholar 

  17. C.L. Jackson and G.B. McKenna, On the anomalous freezing and melting of solvent crystals in swollen gels of natural rubber, Rubber Chem. Technol., 64(5), 760 (1991).

    CAS  Google Scholar 

  18. J.M. Nedelec and M. Baba, On the use of monolithic sol-gel derived mesoporous silica for the calibration of thermoporisemetry using various solvents, J. Sol-Gel Sci. Tech., 31, 169 (2004).

    Article  CAS  Google Scholar 

  19. Q. Qin and G.B. McKenna, Melting of solvents nanoconfined by polymers and networks, J. Polym. Sci. B, 44, 3475 (2006).

    Article  CAS  Google Scholar 

  20. P.J. Flory, Thermodynamics of high polymer solutions, J. Chem. Phys., 10, 51 (1942).

    Article  CAS  Google Scholar 

  21. M.L. Huggins, Theory of solutions of high polymers, J. Am. Chem. Soc., 64, 1712 (1942).

    Article  CAS  Google Scholar 

  22. M. Iza, S. Woerly, C. Damnumah, S. Kaliaguine and M. Bousmina, Determination of pore size distribution for mesoporous materials and polymeric gels by means of DSC measure-ments: thermoporometry, Polymer, 41, 5885 (2000).

    Article  CAS  Google Scholar 

  23. S.I. Nakao, Determination of pore size and pore size distribution : 3. Filtration membranes, J. Membr. Sci., 96, 131 (1994).

    Article  CAS  Google Scholar 

  24. K.J. Kim, A.G. Fane, R.B. Aim, M.G. Liu, G. Jonsson, I.C. Tessaro, A.P. Broek and D. Bargeman, A comparative study of techniques used for porous membranes characteri- zation - pore characterization, J. Membr. Sci., 87, 35 (1994).

    Article  CAS  Google Scholar 

  25. J.N. Hay and P.R. Laity, Observations of water migration during thermoporometry studies of cellulose films, Polymer, 41, 6171 (2000).

    Article  CAS  Google Scholar 

  26. A. Ksiqzczak, A. Radomski and T. Zielenkiewicz, Nitrocellulose porosity - thermoporo- metry, J. Therm. Anal. Calorim., 74, 559 (2003).

    Article  Google Scholar 

  27. G. Rohman, D. Grande, F. Lauprêtre, S. Boileau and P. Guérin, Design of porous polymeric materials from Interpenetrating Polymer Networks (IPNs): poly(DL-lactide)/poly(methyl methacrylate)-based semi-IPN systems, Macromolecules, 38, 7274 (2005).

    Article  CAS  Google Scholar 

  28. N. Billamboz, J.M. Nedelec, M. Grivet and M. Baba, Cross-linking of polyolefins : a study by thermoporosimetry with benzene derivatives swelling solvents, Chem. Phys. Chem., 6 (6), 1126 (2005).

    CAS  Google Scholar 

  29. A. Endruweit, M.S. Johnson and A.C. Long, Curing of composite components by ultraviolet radiation: a review, Polym. Composite., 27(2), 119 (2006).

    Article  CAS  Google Scholar 

  30. R.M. Williams, I.V. Khudyakov, M.B. Purvis, B.J. Overton and N.J. Turro, Direct and sensitized photolysis of phosphine oxide polymerization photoinitiators in the presence and absence of a model acrylate monomer: a time resolved EPR, cure monitor, and PhotoDSC study, J. Phys. Chem. B, 104, 10437 (2000).

    Article  CAS  Google Scholar 

  31. I.V. Khudyakov, W.S. Fox and M.B. Purvis, Photopolymerization of vinyl acrylate studied by PhotoDSC, Ind. Eng. Chem. Res., 40, 3092 (2001).

    Article  CAS  Google Scholar 

  32. V. Narayanan and A.B. Scranton, Photopolymerization of composites, Trends Polym. Sci., 5, 415 (1997).

    CAS  Google Scholar 

  33. I.V. Khudyakov, J.C. Legg, M.B. Purvis and B.J. Overton, Kinetics of photopolymerization of acrylates with functionality of 1-6, Ind. Eng. Chem. Res., 38, 3353 (1999).

    Article  CAS  Google Scholar 

  34. N. Grassie and G. Scott, Polymer degradation and stability, Cambridge: Cambridge University Press (1985).

    Google Scholar 

  35. B. Mattson and B. Stenberg, Thermo-oxidative degradation and stabilisation of rubber materials, Progr. Rubber. Plastic. Tech., 9, 1 (1985).

    Google Scholar 

  36. J. Lemaire, Predicting polymer durability, Chemtec, 10, 42 (1996).

    Google Scholar 

  37. N.S. Allen, M. Edge, A. Ortega, G. Sandoval, C. M. Liauw, J. Verran, J. Stratton and R.B. McIntyre, Degradation and stabilisation of polymers and coatings: nano versus pigmentary titania particles, Polym. Degrad. Stabil., 85, 927 (2004).

    Article  CAS  Google Scholar 

  38. M. Morel, J. Lacoste and M. Baba, Photo-DSC I: a new tool to study the semi-crystalline polymer accelerated photo-ageing, Polymer, 46, 9274 (2005).

    Article  CAS  Google Scholar 

  39. P.-O. Bussiere, M. Baba, J.-L. Gardette and J. Lacoste. Characterization of photodegradation of polybutadiene and polyisoprene: chronology of crosslinking and chain-scission, Polym. Degrad. Stabil., 88, 182 (2005).

    Article  CAS  Google Scholar 

  40. J.M. Harris, Poly(ethylene glycol) chemistry: biotechnical an biomedical application, New York: Plenum (1992).

    Google Scholar 

  41. J.-M. Blin, A. Léonard, Z-Y. Yuan, L. Gigot, A. Vantomme, A.K. Cheetham and B.L. Su, Hierarchically mesoporous/macroporous metal oxides templated from polyethylene oxide surfactant assemblies, Angew. Chem. Int. Ed, 42, 2872 (2003).

    Article  CAS  Google Scholar 

  42. S.M. Rele, W. Cui, L. Wang, S. Hou, G. Barr-Zarse, D. Tatton, Y. Gnanou, J.D. Esko and E.L. Chaikof, Dendrimer-like PEO glycopolymers exhibit anti-inflammatory properties, J. Am. Chem. Soc., 127(29), 10132 (2005).

    Article  CAS  Google Scholar 

  43. S. Morlat and J.-L. Gardette, Phototransformation of water-soluble polymers. I: photo- and thermooxidation of poly(ethylene oxide) in solid state, Polymer, 42, 6071 (2001).

    Article  CAS  Google Scholar 

  44. C. Wilhem and J.-L. Gardette, Infrared analysis of the photochemical behaviour of seg-mented polyurethanes: aliphatic poly(ether-urethane)s, Polymer, 39, 5973 (1998).

    Article  Google Scholar 

  45. F. Fraisse, S. Morlat-Thérias, J.-L. Gardette, J.-M. Nedelec and M. Baba, In situ study of the accelerated ageing of poly(ethylene oxide), J. Phys. Chem. B, 110, 14678 (2006).

    Article  CAS  Google Scholar 

  46. F. Fraisse, J.-M. Nedelec, J.-P. E. Grolier and M. Baba, Isothermal crystallization kinetics of in situ photo and thermo aged poly(ethylene oxide) using PhotoDSC, Phys. Chem. Chem. Phys., 9, 2137 (2007).

    Article  CAS  Google Scholar 

  47. M. Avrami, Kinetics of phase change. I. General theory, J. Chem. Phys., 7, 1103 (1939).

    Article  CAS  Google Scholar 

  48. M. Avrami, Kinetics of phase change. II. Transformation-time relations for random dis-tribution of nuclei, J. Chem. Phys., 8, 212 (1940).

    Article  CAS  Google Scholar 

  49. M. Avrami, Granulation, phase change, and microstructure kinetics of phase change. III, J. Chem. Phys., 9, 177 (1941).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Marie Nedelec .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this paper

Cite this paper

Nedelec, JM., Baba, M. (2008). Characterization of Gels and Networks Using New Calorimetric Techniques. In: Innocenzi, P., Zub, Y.L., Kessler, V.G. (eds) Sol-Gel Methods for Materials Processing. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8514-7_12

Download citation

Publish with us

Policies and ethics