Skip to main content

Local Moment Approach to Multi-Orbital Anderson and Hubbard Models

  • Conference paper
Quantum Magnetism

Part of the book series: NATO Science for Peace and Security Series ((NAPSB))

Abstract

The variational local moment approach (V-LMA), being a modification of the method due to Logan et al., is presented here. The existence of local moments is taken from the outset and their values are determined through variational principle by minimizing the corresponding ground state energy. Our variational procedure allows us to treat both fermi- and non-fermi liquid systems as well as insulators without any additional assumptions. It is proved by an explicit construction of the corresponding Ward functional that the V-LMA belongs to the class of conserving approximations. As an illustration, the V-LMA is used to solve the multi-orbital single impurity Anderson model. The method is also applied to solve the dynamical mean-field equations for the multi-orbital Hubbard model. In particular, the Mott-Hubbard metal—insulator transition is addressed within this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.W. Anderson, Phys. Rev. 124, 11 (1961).

    ADS  Google Scholar 

  2. R. Arita, K. Held, Phys. Rev. B 72, 201102(R) (2005).

    Article  ADS  Google Scholar 

  3. G. Baym, L.P. Kadanoff, Phys. Rev. 124, 287-299 (1961).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. S. Biermann, L. de’ Medici, A. Georges, Phys. Rev. Lett. 95, 206401 (2005).

    Article  ADS  Google Scholar 

  5. R. Bulla, Phys. Rev. Lett. 83, 136 (1999).

    Article  ADS  Google Scholar 

  6. R. Bulla, Phil. Mag. 86, 1877 (2006).

    Article  ADS  Google Scholar 

  7. K. Byczuk, W. Hofstetter, D. Vollhardt, Phys. Rev. B 69, 045112 (2004).

    Article  ADS  Google Scholar 

  8. K. Byczuk, W. Hofstetter, D. Vollhardt, Phys. Rev. Lett. 94, 056404 (2005).

    Article  ADS  Google Scholar 

  9. K. Byczuk, M. Ulmke, D. Vollhardt, Phys. Rev. Lett. 90, 196403 (2003).

    Article  ADS  Google Scholar 

  10. K. Byczuk, M. Ulmke, Eur. Phys. J. B 45, 449 (2005).

    Article  ADS  Google Scholar 

  11. M. Caffarel, W. Krauth, Phys. Rev. Lett. 72, 1545.

    Google Scholar 

  12. T. A. Costi, J. Kroha, P. W ölfle, Phys. Rev. B 53, 1850 (1996).

    Article  ADS  Google Scholar 

  13. P.G.J. van Dongen, C. Knecht, N. Blmer, Phys. Stat. Sol. (b) 243, 116 (2006).

    Article  ADS  Google Scholar 

  14. A. Georges, et al., Rev. Mod. Phys. 68, 13 (1996).

    Article  MathSciNet  ADS  Google Scholar 

  15. A. Georges, G. Kotliar, Phys. Rev. B 45 6479, (1992).

    Article  ADS  Google Scholar 

  16. A. Hewson, The Kondo problem to heavy fermions (Cambridge University Press, 1993).

    Book  Google Scholar 

  17. M. Jarell, J.E. Gubernatis, Phys. Rep. 269, 1333 (1996).

    Article  Google Scholar 

  18. P. Jarillo-Herrero, J. Kong, H.S.J. van der Zant, C. Dekker, L.P. Kouwenhoven, S. De Franceschi, Nature 434, 484 (2005).

    Article  ADS  Google Scholar 

  19. A. Kauch, K. Byczuk, Physica B, 378-380, 297-298 (2006).

    Article  ADS  Google Scholar 

  20. 20. A. Kauch, K. Byczuk, in preparation.

    Google Scholar 

  21. B. Kj öllerstr öm, D.J. Scalapino, J.R. Schrieffer, Phys. Rev. 148, 665-671 (1966).

    Article  ADS  Google Scholar 

  22. A. Koga, et al., Phys. Rev. Lett. 92, 216402 (2004).

    Article  ADS  Google Scholar 

  23. G. Kotliar, D. Vollhardt, Physics Today 57, No. 3 (March), 53 (2004).

    Google Scholar 

  24. L. Kouwenhoven, L. Glazman, Physics World 14, 33 (2001).

    Google Scholar 

  25. A. Liebsch, Phys. Rev. B 70, 165103 (2004).

    Article  ADS  Google Scholar 

  26. 26. D. Logan, M.P. Eastwood, M.A. Tusch, J. Phys. Condens. Matter 10, 2673-2700 (1998), D. Logan, M.T. Glossop, J. Phys. Condens. Matter 12, 985 (2000); M.T. Glossop, D. Logan, ibid. 15, 7519 (2003); V.E. Smith, D.E. Logan, H.R. Krishnamurthy, Eur. Phys. J. B 32, 49-63 (2003).

    Google Scholar 

  27. W. Metzner, D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989).

    Article  ADS  Google Scholar 

  28. Th. Pruschke, M. Jarrell, J.K. Freericks, Adv. in Phys. 44, 187 (1995).

    Article  ADS  Google Scholar 

  29. N. Read, D. Newns, J. Phys. C 16, 3273 (1983).

    Article  ADS  Google Scholar 

  30. D. Vollhardt, Correlated Electron Systems, vol. 9, ed. V.J. Emery, (World-Scientific, Singapore, 1993), p. 57.

    Google Scholar 

  31. S. White, Phys. Rev. Lett. 69, 2863 (1992).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V.

About this paper

Cite this paper

Kauch, A., Byczuk, K. (2008). Local Moment Approach to Multi-Orbital Anderson and Hubbard Models. In: Barbara, B., Imry, Y., Sawatzky, G., Stamp, P.C.E. (eds) Quantum Magnetism. NATO Science for Peace and Security Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8512-3_7

Download citation

Publish with us

Policies and ethics