Skip to main content

Anisotropic Exchange in Spin Chains

  • Conference paper
Quantum Magnetism

Abstract

Quasi-one-dimensional (1D) spin systems are highly unconventional materials, which exhibit a wide variety of phenomena, including spin-Peierls transition and charge ordering. In this paper, we show that electron spin resonance (ESR) is a very powerful tool to study spin relaxation mechanisms in these systems. We review the microscopic theory of superexchange and include a discussion of some recent experimental and theoretical developments concerning ESR in 1D solids. Furthermore, we evaluate the anisotropy and the temperature dependence of the ESR linewidth in three 1D systems (LiCuVO4, CuGeO3, α′-NaV2O5). Thus, we can determine the type and the magnitude of the anisotropic exchange interactions between spins and investigate the effects of fluctuations of charge and lattice degrees of freedom in the vicinity of phase transitions in these systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Choukroun, J.-L. Richard, and A. Stepanov, Phys. Rev. Lett. 87, 127207 (2001).

    Article  ADS  Google Scholar 

  2. [2] M. Oshikawa and I. Affleck, Phys. Rev. Lett. 82, 5136 (1999); Phys. Rev. B 65, 134410 (2002).

    Google Scholar 

  3. H.-A. Krug von Nidda, L. E. Svistov, M. V. Eremin, R. M. Eremina, A. Loidl, V. Kataev, A. Validov, A. Prokofiev, and W. Assmus, Phys. Rev. B 65, 134445 (2002).

    Article  ADS  Google Scholar 

  4. S. Tornow, O. Entin-Wohlman, and A. Aharony, Phys. Rev. B 60, 10206 (1999).

    Article  ADS  Google Scholar 

  5. M. V. Eremin, D. V. Zakharov, R. M. Eremina, J. Deisenhofer, H.-A. Krug von Nidda, G. Obermeier, S. Horn, and A. Loidl, Phys. Rev. Lett 96, 027209 (2006).

    Article  ADS  Google Scholar 

  6. [6] (i) Double exchange interaction which cannot be written using spin variables is beyond the scope of this work and will only be mentioned briefly in Section 2.2.5. (ii) In case S > 1/2, this equation may only be the leading term of a series expan-sion with respect to the total spin operators Sa and Sb , in which higher terms such as biquadratic (Sa, iSb, j )2 occur. Theoretical [9, Gon66] as well as experimental [Har63] estimates of this contribution give the value, which is two orders of magnitude smaller than the bilinear part (1). In this work we will concern only S = 1/2 systems for which this expression is fully correct. The quantities entering into Eq. (2) are

    Google Scholar 

  7. M. V. Eremin, A. A. Kornienko, and A. M. Leushin, Sov. Phys. Solid State 14, 378 (1972).

    Google Scholar 

  8. P. V. Schastnev and K. M. Salikhov, Theor. and Exp. Chem. 9, 223 (1975).

    Article  Google Scholar 

  9. P. W. Anderson, Phys. Rev. 115, 2 (1959).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. A. J. Freeman and R. E. Watson, Phys. Rev. 124, 1439 (1961).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. A. J. Freeman, R. K. Nesbet, and R. E. Watson, Phys. Rev. 125, 1978 (1962).

    Article  ADS  Google Scholar 

  12. [12] M. V. Eremin and Yu. V. Rakitin, Phys. Stat. Sol. (b) 80, 579 (1977); 82, 221 (1978); 85, 783(1978).

    Google Scholar 

  13. M. V. Eremin and Yu. V. Rakitin, Phys. Stat. Sol. (b) 97, 51 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  14. [14] R. N. Musin and P. V. Schastnev, Zh. Strukt. Khim. 17, 411 (1976); Zh. Strukt. Khim. 17, 419(1976).

    Google Scholar 

  15. H. Kramers, Physica 1, 182 (1934).

    Article  MATH  ADS  Google Scholar 

  16. G. W. Pratt, Phys. Rev. 97, 926 (1955).

    Article  MATH  ADS  Google Scholar 

  17. J. Yamashita and J. Kondo, Phys. Rev. 109, 730 (1958).

    Article  MATH  ADS  Google Scholar 

  18. J. S. Griffith, The Theory of Transition Metal Ions(Cambridge University Press, Cambridge, 1971).

    Google Scholar 

  19. [19] J. B. Goodenough, Phys. Rev. 100, 564 (1955); J. Phys. Chem. Solids 6, 287 (1958).

    Google Scholar 

  20. P. W. Anderson, Solid State Phys. 14, 99 (1963).

    Article  Google Scholar 

  21. M. V. Eremin and Yu. V. Rakitin, J. Phys. C: Solid State Phys. 15, L259 (1982).

    Article  ADS  Google Scholar 

  22. M. V. Eremin, Sov. Phys. Solid State 24, 3216 (1982).

    Google Scholar 

  23. V. K. Voronkova, M. V. Eremin, L. V. Mosina, and Yu. V. Yablokov, Mol. Phys. 50, 379 (1983).

    Article  ADS  Google Scholar 

  24. M. V. Eremin and Yu. V. Rakitin, J. Phys. C: Solid State Phys. 14, 247 (1981).

    Article  ADS  Google Scholar 

  25. J. Ferguson, H. J. Guggenheim, and E. R. Krausz, J. Phys. C 4, 1866 (1971).

    Article  ADS  Google Scholar 

  26. C. Zener, Phys. Rev. 82, 403 (1951).

    Article  ADS  Google Scholar 

  27. P. W. Anderson and H. Hasegawa, Phys. Rev. 100, 675 (1955).

    Article  ADS  Google Scholar 

  28. M. V. Eremin, Spectroskopy of Crystals, pp. 150-172, Nauka, Moskau (1985).

    Google Scholar 

  29. A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Clarendon, Oxford, 1970).

    Google Scholar 

  30. [30] M. V. Eremin et al., unpublished.

    Google Scholar 

  31. F. Keffer, Phys. Rev. 126, 896 (1962).

    Article  MATH  ADS  Google Scholar 

  32. I. Dzialoshinski, J. Phys. Chem. Solids 4, 241 (1958).

    Article  ADS  Google Scholar 

  33. [33] T. Moriya, Phys. Rev. Lett. 4, 228 (1960); Phys. Rev. 120, 91 (1960).

    Google Scholar 

  34. [34] A. S. Moskvin and I. G. Bostrem, Fiz. Tverd. Tela 19, 1616 (1977); Sov. Phys. Solid State 73, 1532 (1977).

    Google Scholar 

  35. B. Bleaney and K. D. Bowers, Proc. Roy. Soc. A214, 451 (1952).

    ADS  Google Scholar 

  36. K. Yosida, Theory of Magnetism (Springer, Berlin, 1996).

    MATH  Google Scholar 

  37. G. E. Pake and T. L. Estle, The Physical Principles of Electron Paramagnetic Resonance (Benjamin Inc., Montreal, 1973).

    Google Scholar 

  38. S. A. Altshuler and B. M. Kozyrev, Electron Paramagnetic resonance (Acad. Press, New York, 1964).

    Google Scholar 

  39. A. Bencini and D. Gatteschi (Springer, Berlin, 1991).

    Google Scholar 

  40. J. H. Van Vleck, Phys. Rev. 74, 1168 (1948).

    Article  MATH  ADS  Google Scholar 

  41. P. W. Anderson and P. R. Weiss, Rev. Mod. Phys. 25, 269 (1953).

    Article  ADS  Google Scholar 

  42. R. Kubo and K. Tomita, J. Phys. Soc. Jpn. 9, 888 (1954).

    Article  ADS  Google Scholar 

  43. R. E. Dietz, F. R. Merritt, R. Dingle, D. Hone, B. G. Silbernagel, and P. M. Richards, Phys. Rev. Lett. 26, 1186 (1971).

    Article  ADS  Google Scholar 

  44. T. T. P. Cheung, Z. G. Soos, R. E. Dietz, and F. R. Merrit, Phys. Rev. B 17, 1266 (1978).

    Article  ADS  Google Scholar 

  45. M. J. Hennessey, C. D. McElwee, and P. M. Richards, Phys. Rev. B 7, 930 (1973).

    Article  ADS  Google Scholar 

  46. Z. G. Soos, K. T. McGregor, T. T. P. Cheung, and A. J. Silverstein, Phys. Rev. B 16, 3036(1977).

    Article  ADS  Google Scholar 

  47. G. Blasse, J. Phys. Chem. Solids, 27, 612 (1965).

    Article  ADS  Google Scholar 

  48. M. A. Lafontaine, M. Leblanc, and G. Ferey, Acta Crys. C 45, 1205 (1989).

    Article  Google Scholar 

  49. J. C. Bonner and M. E. Fisher, Phys. Rev. 135, A640 (1964).

    Article  ADS  Google Scholar 

  50. A. N. Vasil’ev, JETP Lett. 69, 876 (1999).

    Article  ADS  Google Scholar 

  51. A. N. Vasil’ev, L. A. Ponomarenko, H. Manaka, I. Yamada, M. Isobe, and Y. Ueda, Phys. Rev. B 64, 024419 (2001).

    Article  ADS  Google Scholar 

  52. H. V ölenkle, A. Wittmann, and H. Nowotny, Monatsh. Chem. 98, 1352 (1967).

    Article  Google Scholar 

  53. M. Braden, G. Wilkendorf, J. Lorenzana, M. Ain, G. J. McIntyre, M. Behruzi, G. Heger, G. Dhalenne, and A. Revcolevschi, Phys. Rev. B 54, 1105 (1996).

    Article  ADS  Google Scholar 

  54. K. Fabricius, A. Kl ümper, U. L öw, B. B üchner, T. Lorenz, G. Dhalenne, and A. Revcolevschi, Phys. Rev. B 57, 1102 (1998).

    Article  ADS  Google Scholar 

  55. M. Hase, I. Terasaki, and K. Uchinokura, Phys. Rev. Lett. 70, 3651 (1993).

    Article  ADS  Google Scholar 

  56. J. P. Boucher and L. P. Regnault, J. Phys. I France 6, 1939 (1996).

    Article  Google Scholar 

  57. A. Carpy and J. Galy, Acta Crystallogr. Sect. B 31, 1481 (1975).

    Article  Google Scholar 

  58. H. Smolinski, C. Gros, W. Weber, U. Peuchert, G. Roth, M. Weiden, and C. Geibel, Phys. Rev. Lett. 80, 5164 (1998).

    Article  ADS  Google Scholar 

  59. M. Lohmann, A. Loidl, M. Klemm, G. Obermeier, and S. Horn, Solid State Comm. 104, 649(1997).

    Article  ADS  Google Scholar 

  60. P. Thalmeier, P. Fulde, Europhys. Lett. 44, 242 (1998).

    Article  ADS  Google Scholar 

  61. B. Pilawa, J. Phys.: Condens. Matter 9, 3779 (1997).

    Article  ADS  Google Scholar 

  62. R. M. Eremina, M. V. Eremin, V. N. Glazkov, H.-A. Krug von Nidda, and A. Loidl, Phys. Rev. B 68, 014417 (2003).

    Article  ADS  Google Scholar 

  63. Ch. Kegler, N. B üttgen, H.-A. Krug von Nidda, A. Krimmel, L. Svistov, B. I. Kochelaev, A. Loidl, A. Prokofiev, and W. Aßmus, Eur. Phys. J. B 22, 321 (2001).

    Article  ADS  Google Scholar 

  64. R. E. Walstedt and S. -W.Cheong, Phys. Rev. B 64 014404 (2001).

    Article  ADS  Google Scholar 

  65. H. Eskes, L. H. Tjeng, and G. A. Sawatzky, Phys. Rev. B 41, 288 (1990).

    Article  ADS  Google Scholar 

  66. M. S. Hybertsen, E. B. Stechel, W. M. C. Foulkes, and M.Schluter, Phys. Rev. B 45, 10032, (1992).

    Article  ADS  Google Scholar 

  67. T. Ohama, H. Yasuoka, M. Isobe, and Y. Ueda, J. Phys. Soc. Jpn. 66, 3008 (1997).

    Article  ADS  Google Scholar 

  68. V. V. Mazurenko, A. I. Lichtenstein, M. I. Katsnelson, I. Dasgupta, T. Saha-Dasgupta, and V. I. Anisimov, Phys. Rev. B 66, 081104 (2002).

    Article  ADS  Google Scholar 

  69. S. A. Golubchik, M. Isobe, A. N. Ivlev, B. N. Mavrin, M. N. Popova, A. B. Sushkov, Y. Ueda and A. N. Vasil’ev, J. Phys. Soc. Jpn. 66, 4042 (1997).

    Article  ADS  Google Scholar 

  70. C. Kegler, N. B üttgen, H. -A. Krug von Nidda, A. Loidl, R. Nath, A. V. Mahajan, A. V. Prokofiev, and W. Aßmus Phys. Rev. B 73, 104418 (2006).

    Article  ADS  Google Scholar 

  71. M. Braden, B. Hennion, W. Reichardt, G. Dhalenne, and A. Revcolevschi, Phys. Rev. Lett. 80, 3634 (1998).

    Article  ADS  Google Scholar 

  72. C. H. Chen and S.-W. Cheong, Phys. Rev. B 51, 6777 (1995).

    Article  ADS  Google Scholar 

  73. G. Quirion, F. S. Razavi, B. Dumoulin, M. Poirier, A. Revcolevschi, and G. Dhalenne, Phys. Rev. B 58, 882 (1998).

    Article  ADS  Google Scholar 

  74. H. Nojiri, S. Luther, M. Motokawa, M. Isobe, and Y. Ueda, J. Phys. Soc. Jpn. 69, 2291 (2000).

    Article  ADS  Google Scholar 

  75. A. Damascelli, C. Presura, and D. van der Marel, J. Jegoudez, and A. Revcolevschi, Phys. Rev. B 61, 2535 (2000).

    Article  ADS  Google Scholar 

  76. [76] S. Nishimoto and Y. Ohta, J. Phys. Soc. Jpn. 67, 3679 (1998); J. Phys. Soc. Jpn. 67, 4010(1998).

    Google Scholar 

  77. A. I. Smirnov, M. N. Popova, A. B. Sushkov, and S. A. Golubchik, D. I. Khomskii, M. V. Mostovoy, A. N. Vasilev, M. Isobe, and Y. Ueda, Phys. Rev. B 59, 14546 (1999).

    Article  ADS  Google Scholar 

  78. H. Schwenk, S. Zherlitsyn, B. L üthi, E. Morr é , and C. Geibel, Phys. Rev. B 60, 9194 (1999).

    Article  ADS  Google Scholar 

  79. T. Goto and B. Luethi, Adv. in Phys. 52, 67 (2003).

    Article  ADS  Google Scholar 

  80. M. Fischer, P. Lemmens, G. Els, and G. G üntherodt, E. Ya. Sherman, E. Morr é , C. Geibel, and F. Steglich, Phys. Rev. B 60, 7284 (1999).

    Article  ADS  Google Scholar 

  81. J. Owen and E. A. Harris, Pair Spectra and Exchange Interaction (Plenum Press, New York, 1972).

    Google Scholar 

  82. H. Seo and H. Fukuyama, J. Phys. Soc. Jpn. 67, 2602 (1998).

    Article  ADS  Google Scholar 

  83. M. Heinrich, H.A. Krug von Nidda, R. M. Eremina, A. Loidl, Ch. Helbig, G. Obermeier, and S. Horn, Phys. Rev. Lett. 93, 116402 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V.

About this paper

Cite this paper

Zakharov, D., von Nidda, HA.K., Eremin, M., Deisenhofer, J., Eremina, R., Loidl, A. (2008). Anisotropic Exchange in Spin Chains. In: Barbara, B., Imry, Y., Sawatzky, G., Stamp, P.C.E. (eds) Quantum Magnetism. NATO Science for Peace and Security Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8512-3_14

Download citation

Publish with us

Policies and ethics