Effective Magnus Force on a Magnetic Vortex

  • L. R. Thompson
  • P. C. E. Stamp
Conference paper
Part of the NATO Science for Peace and Security Series book series (NAPSB)


In classical hydrodynamics, a Magnus force exists between a vortex and the hosting fluid acting transverse to their relative motion. There is a quantum Magnus force acting on vortices in superfluids and superconductors and an analogous force acting on magnetic vortices excited in spin systems. Couplings with the system quasiparticles can modify this to an effective Magnus force by introducing transverse damping forces. The existence and magnitude of transverse damping forces are highly controversial and have not been settled by experiment. We derive the various damping forces on a vortex in a magnetic system, in particular, damping forces acting longitudinally and transversely to current and past motion (memory effects). In a magnetic system, we expect experiments can more accurately study vortex motion for comparison with theory. Despite the simplicity of the spin system, the results are general and should reveal quantitative behaviour for the superfluid/superconductor systems.


Vortex Core Magnetic System Vortex Center Vortex Motion Magnetic Vortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. E. Hall and W. F. Viven, Proc. R. Soc. London, Ser. A 238, 204 (1956); ibid. 238, 215 (1956)MATHCrossRefADSGoogle Scholar
  2. 2.
    J. M. Duan and A. J. Leggett, Phys. Rev. Lett. 68, 1216 (1992)CrossRefADSGoogle Scholar
  3. 3.
    S. V. Iordanskii, Ann. Phys (NY) 29, 335-349 (1964); and JETP 22, 160-167 (1966)Google Scholar
  4. 4.
    E. B. Sonin, Phys. Rev. B 55, 485 (1997)CrossRefADSGoogle Scholar
  5. 5.
    P. Ao and D. J. Thouless, Phys. Rev. Lett. 70, 2158 (1993)CrossRefADSGoogle Scholar
  6. 6.
    D. J. Thouless, P. Ao and Q. Niu, Phys. Rev. Lett. 76, 3758 (1996)CrossRefADSGoogle Scholar
  7. 7.
    D. L. Huber, Phys. Rev. B 26, 3758 (1982)CrossRefADSGoogle Scholar
  8. 8.
    A. V. Nikiforov and E. B. Sonin, Sov. Phys. JETP 58, 373 (1983)Google Scholar
  9. 9. A.A. Thiele, Phys. Rev. Lett. 30, 230 (1973); J. Appl. Phys. 45, 377 (1974)Google Scholar
  10. 10.
    J. C. Slonczewski, from Physics of Magnetic Materials, Eds. J. Rauluszkiewicz et. al., World Scientific: Singapore (1984)Google Scholar
  11. 11.
    R. Rajaraman, Solitons and instantons, An introduction to solitons and instantons in quantum field theory, North Holland Publishing: Amsterdam (1982)MATHGoogle Scholar
  12. 12.
    A. O. Caldeira and A. J. Leggett, Physica A 121, 587 (1983)MATHCrossRefMathSciNetADSGoogle Scholar
  13. 13.
    A. H. Castro Neto and A. O. Caldeira, Phys. Rev. E 48, 4037 (1993)CrossRefADSGoogle Scholar
  14. 14.
    G. E. Volovik and V. P. Mineev, JETP 45, 1186 (1977)MathSciNetADSGoogle Scholar
  15. 15.
    N. D. Mermin, RMP 51, 591 (1979)CrossRefMathSciNetGoogle Scholar
  16. 16.
    R. P. Feynman, F. L. Vernon, Ann. Phys. 24, 118 (1963)CrossRefMathSciNetADSGoogle Scholar
  17. 17.
    R. Kubo, Rep. Prog. Phys. 29, 255 (1966)CrossRefADSGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2008

Authors and Affiliations

  • L. R. Thompson
    • 1
  • P. C. E. Stamp
    • 2
  1. 1.Department of Physics & AstronomyUniversity of British ColumbiaVancouverCanada
  2. 2.Department of Physics & AstronomyUniversity of British Columbia and the Pacific Institute of Theoretical PhysicsVancouverCanada

Personalised recommendations