Remote Sensing-Based Damage Assessment for Homeland Security

  • Anthony M. Filippi
Part of the The GeoJournal Library book series (GEJL, volume 94)


For natural or anthropogenic disasters, rapid assessment is critical for an appropriate and effective emergency response. Remote sensing has served—and will continue to serve—a vital function in disaster damage-assessment activities. This includes disaster-mapping of natural and agricultural ecosystems and human settlements, which may involve assessments of structural damage, contamination, and affected populations. Single- and multi-date (change detection) analyses can be employed, and a need to exploit both spectral and spatial information in order to delineate damage regions from remote sensor imagery is identified. This chapter provides a brief overview of some of the remote-sensing damage-assessment applications that are of utility in the realm of homeland security. Specific attention is given to remote sensing-based detection of vegetation damage and soil contamination, including a discussion of the remote-sensing implications of artificial radionuclide contamination, as well as damage to urbanized areas and other human settlements.


Contamination damage assessment disaster human settlements remote sensing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aarnio, P. A., Ala-Heikkilä, J. J., Hakulinen, T. T. & Nikkinen, M. T. (1998). Gamma spectrometric monitoring of environmental radioactivity using mobile equipment. Journal of Radioanalytical and Nuclear Chemistry, 233(1–2), 217–223.Google Scholar
  2. Abduragimov, I. M. & Odnolko, A. A. (1993). Fires on radioactively contaminated areas. Priroda, 1, 28–30.Google Scholar
  3. Adams, M. L., Philpot, W. D. & Norvell, W. A. (1999). Yellowness index: An application of the spectral second derivative to estimate chlorosis of leaves in stressed vegetation. International Journal of Remote Sensing, 20(18), 3663–3675.Google Scholar
  4. Adams, B., Huyck, C. K., Eguchi, R., Yamazaki, F., Estrada, M. & Herring, C. (2007). Earthquake recovery: QuickBird imagery of Algeria supports damage detection and relief efforts. Earth Imaging Journal, 1(1). Retrieved February, 28, 2007 from
  5. Adams, J. B. & Smith, M. O. (1986). Spectral mixture modeling: A new analysis of rock and soil types at the Viking Lander 1 site. Journal of Geophysical Research, 91, 8098–8112.Google Scholar
  6. Allard, Y. & Jouan, A. (2005). Multisensors and contextual information fusion: Application to object detection and automated terrain analysis. (In E. Shahbazian, G. Rogova & P. Valin (Eds.), Data Fusion for Situation Monitoring, Incident Detection, Alert and Response Management (pp. 381–393). Amsterdam: IOS Press).Google Scholar
  7. Andrienko, G., Andrienko, N. & Gitis, V. (2003). Interactive maps for visual exploration of grid and vector geodata. ISPRS Journal of Photogrammetry & Remote Sensing, 57, 380–389.Google Scholar
  8. Anon (2004). Abrupt climate change: Inevitable surprises. Population and Development Review, 30(3), 563–574. doi: 10.1111/j.1728–4457.2004.00030.x.Google Scholar
  9. Aryanfar, F. & Sarabandi, K. (2004). Through wall imaging at microwave frequencies using space-time focusing. (In IEEE Intl. antennas and propagation symposium, Vol. 3 (pp. 3063–3066)).Google Scholar
  10. Associated Press (2007). Ex-generals: Global warming threatens U.S. security., 15 April 2007, Retrieved April 16, 2007, from
  11. Bally, P., Béquignon, J., Arino, O. & Briggs, S. (2005). Remote sensing and humanitarian aid—A life-saving combination. ESA Bulletin, 122, 36–41.Google Scholar
  12. Barnett, J. (2003). Security and climate change. Global Environmental Change, 13, 7–17.Google Scholar
  13. Ben-Dor, E., Levin, N. & Saaroni, H. (2001). A spectral based recognition of the urban environment using the visible and near-infrared spectral region (0.4–1.1 μm). A case study over Tel-Aviv, Israel. International Journal of Remote Sensing, 22(11), 2193–2218.Google Scholar
  14. Benediktsson, J. A., Pesaresi, M. & Arnason, K. (2003). Classification and feature extraction for remote sensing images from urban areas based on morphological transformations. IEEE Transactions on Geoscience and Remote Sensing, 41(9), 1940–1949.Google Scholar
  15. Benz, U. C., Hofmann, P., Willhauck, G., Lingenfelder, I. & Heyen, M. (2004). Multi-resolution, object-oriented fuzzy analysis of remote-sensing data for GIS-ready information. ISPRS Journal of Photogrammetry & Remote Sensing, 58, 239–258.Google Scholar
  16. Benz, U. C. & Schreier, G. (2001). OSCAR–Object oriented segmentation and classification of advanced radar allows automated information extraction. Proc. IGARSS, July 2001, Sydney.Google Scholar
  17. Bernstein, R. & Di Gesù, V. (1999). A combined analysis to extract objects in remote sensing images. Pattern Recognition Letters, 20, 1407–1414.Google Scholar
  18. Beteselassie, N., Fininsa, C. & Badebo, A. (2007). Sources of resistance to stem rust (Puccinia graminis f. sp. tritici) in Ethiopian tetraploid wheat accessions. Genetic Resources and Crop Evolution, 54, 337–343.Google Scholar
  19. Bhaduri, B., Bright, E., Coleman, P. & Dobson, J. (2002). LandScan: Locating people is what matters. Geoinformatics, 5(2), 34–37.Google Scholar
  20. Bhaskaran, S., Datt, B., Forster, B., Neal, T. & Brown, M. (2004). Integrating imaging spectroscopy (445–2543 nm) and geographic information systems for post-disaster management: A case of hailstorm damage in Sydney. International Journal of Remote Sensing, 25(13), 2625–2639.Google Scholar
  21. Billings, S. & Hovgaard, J. (1999). Modeling detector response in airborne gamma-ray spectrometry. Geophysics, 64(5), 1378–1392.Google Scholar
  22. Blaschke, T., Burnett, C. & Pekkarinen, A. (2004). Image segmentation methods for object-based analysis and classification. (In S. M. de Jong & F. D. van der Meer (Eds.), Remote sensing image analysis: Including the spatial domain (pp. 211–236). Dordrecht, The Netherlands: Kluwer).Google Scholar
  23. Borel, C. C. & Gerstl, S. A. W. (1994). Nonlinear spectral mixing models for vegetative and soil surfaces. Remote Sensing of Environment, 47, 403–416.Google Scholar
  24. Boyd, D. S., Entwistle, J. A., Flowers, A. G., Armitage, R. P. & Goldsmith, P. C. (2006). Remote sensing the radionuclide contaminated Belarusian landscape: A potential for imaging spectrometry? International Journal of Remote Sensing, 27(10), 1875–1874.Google Scholar
  25. Boucher, A., Seto, K. C. & Journel, A. G. (2006). A novel method for mapping land cover changes: Incorporating time and space with geostatistics. IEEE Transactions on Geoscience and Remote Sensing, 44(11), 3427–3435.Google Scholar
  26. Brajnik, D., Miklavžicˇ, U. & Tomšicˇ, J. (1992). Map of natural radioactivity in Slovenia and its correlation to the emanation of radon. Radiation Protection Dosimetry, 45(1/4), 273–276.Google Scholar
  27. Brekke, C. & Solberg, A. H. S. (2005). Oil spill detection by satellite remote sensing. Remote Sensing of Environment, 95, 1–13.Google Scholar
  28. Bresnahan, P. (1998). Identification of potential hazardous waste units using aerial readiological measurements. Photogrammetric Engineering & Remote Sensing, 64(10), 995–1001.Google Scholar
  29. Brode, H. L. (1968). Review of nuclear weapons effects.Annual Review of Nuclear Science, 18, 153–202.Google Scholar
  30. Bunn, M. & Wier, A. (2006). Securing the bomb 2006. Project on Managing the Atom, Harvard University, President and Fellows of Harvard College, Cambridge, MA. Retrieved March, 19, 2007 from
  31. Chang, C.-I. (2003). Hyperspectral imaging: Techniques forsSpectral detection and classification. (New York: Kluwer).Google Scholar
  32. Clark, R. N., Gallagher, A. J. & Swayze, G. A. (1990). Material absorption band depth mapping of imaging spectrometer data using a complete band shape least-squares fit with library reference spectra. (In Proc. of the Second Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Workshop, JPL Publication 90–54 (pp. 176–186)).Google Scholar
  33. Clark, R. N., Green, R. O., Swayze, G. A., Meeker, G., Sutley, S., Hoefen, T. M., Livo, K. E., Plumlee, G., Pavri, B., Sarture, C., Wilson, S., Hageman, P., Lamothe, P., Vance, J. S., Boardman, J., Brownfield, I., Gent, C., Morath, L. C., Taggart, J., Theodorakos, P. M. & Adams, M. (2001). Environmental studies of the World Trade Center area after the September 11, 2001 attack. Version 1.1 [Electronic version] from ofr-01–0429/.
  34. Clark, R. N. & Roush, T. L. (1984). Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications. Journal of Geophysical Research, 89, 6329–6340.Google Scholar
  35. Clark, R. N., Swayze, G. A., Livo, K. E., Kokaly, R. F., Sutley, S. J., Dalton, J. B., McDougal, R. R. & Gent, C. A. (2003). Imaging spectroscopy: Earth and planetary remote sensing with the USGS Tetracorder and expert systems. Journal of Geophysical Research, 108(E12), 5131. doi: 10.1029/2002JE001847.Google Scholar
  36. Cloud, J. (2001). Imaging the world in a barrel: CORONA and the clandestine convergence of the earth sciences. Social Studies of Science, 31(2), 231–251.Google Scholar
  37. Cobb, G. P., Abel, M. T., Rainwater, T. R., Austin, G. P., Cox, S. B., Kendall, R. J., Marsland, E. J., Anderson, T. A., Leftwich, B. D., Zak, J. C. & Presley, S. M. (2006). Metal distributions in New Orleans following hurricanes Katrina and Rita: A continuation study. Environmental Science & Technology, 40(15), 4571–4577.Google Scholar
  38. Davids, C. & Tyler, A. N. (2003). Detecting contamination-induced tree stress within the Chernobyl exclusion zone. Remote Sensing of Environment, 85, 30–38.Google Scholar
  39. Defense Civil Preparedness Agency (1973). What the planner needs to know about blast and shock. (In DCPA attack environmental manual. Washington, DC: U.S. Defense Civil Preparedness Agency).Google Scholar
  40. Defense Intelligence Agency (DIA) (1996). Battle damage assessment (BDA) quick guide. (DIA: Washington, DC) February 1996, E-1.Google Scholar
  41. De Moraes, C., Schultz, J. C., Mescher, M. C. & Tumlinson, J. H. (2004). Induced plant signaling and its implications for environmental sensing. Journal of Toxicology and Environmental Health, Part A, 67, 819–834.Google Scholar
  42. Dobson, J. E., Bright, E. A., Coleman, P. R., Durfee, R. C. & Worley, B. A. (2000). LandScan: A global population database for estimating populations at risk. Photogrammetric Engineering & Remote Sensing, 66(7), 849–857.Google Scholar
  43. Dombroski, M. J. & Fischbeck, P. S. (2006). An integrated physical dispersion and behavioral response model for risk assessment of radiological dispersion device (RDD) events. Risk Analysis, 26(2), 501–514. doi: 10.1111/j.1539–6924.2006.00742.x.Google Scholar
  44. Ebinuma, T., Rooney, E., Gleason, S. & Unwin, M. (2005). GPS receiver operations on the disaster monitoring constellation satellites. The Journal of Navigation, 58, 227–240.Google Scholar
  45. Elvidge, C. D. & Chen, Z. (1995). Comparison of broad-band and narrow-band red and near-infrared vegetation indices. Remote Sensing of Environment, 54, 38–48.Google Scholar
  46. EPA (U.S. Environmental Protection Agency) (2005). Response to 2005 hurricanes: Murphy oil spill. [Electronic version] from
  47. Esworthy, R., Schierow, L. J., Copeland, C. & Luther, L. (2005). Cleanup after hurricane Katrina: Environmental considerations. CRS Report for Congress, Congressional Research Service, RS33115, 13 October 2005, 30 pp.Google Scholar
  48. Ferretti, A., Ferrucci, F., Prati, C. & Rocca, F. (2000). SAR analysis of building collapse by means of the permanent scatterers technique. In International Geoscience and Remote Sensing Symposium, Honolulu, Hawaii, 24–28 July 2000, 7, 3219–3221. doi: 10.1109/IGARSS.2000.860388.Google Scholar
  49. Filippi, A. M. & Jensen, J. R. (2007). Effect of continuum removal on hyperspectral coastal vegetation classification using a fuzzy learning vector quantizer. IEEE Transactions on Geoscience and Remote Sensing, 45(6), 1857–1869. doi: 10.1109/TGRS.2007.894929.Google Scholar
  50. Filippi, A. M. & Jensen, J. R. (2006). Fuzzy learning vector quantization for hyperspectral coastal vegetation classification. Remote Sensing of Environment, 100, 512–530. doi: 10.1016/j.rse.2005.11.007.Google Scholar
  51. Forster, B. C. (1985). An examination of some problems and solutions in monitoring urban areas from satellite platforms. International Journal of Remote Sensing, 6(1), 139–151.Google Scholar
  52. Fox, J. (2007). Watching nuclear bazaar difficult, spy chief says. Global Security Newswire, 11 September 2007, Retrieved from
  53. Frost, G. & Costello, M. (2003). Bomb damage assessment using a dispensed sensor projectile. IEEE Transactions on Aerospace and Electronic Systems, 39(3), 813–823.Google Scholar
  54. Gamba, P., Benediktsson, J. A. & Wilkinson, G. (2003). Forward to the special issue on urban remote sensing by satellite. IEEE Transactions on Geoscience and Remote Sensing, 41(9), 1903–1906.Google Scholar
  55. Gao, B.-C. (1996). NDWI: A normalized difference water index for remote sensing of liquid water from space. Remote Sensing of Environment, 58, 257–266.Google Scholar
  56. Gaso, M. I., Segovia, N., Herrera, T., Perez-Silva, E., Cervantes, M. L., Quintero, E., Palacios, J. & Acosta, E. (1998). Radiocaesium accumulation in edible wild mushrooms from coniferous forests around the nuclear centre of Mexico. The Science of the Total Environment, 223, 119–129.Google Scholar
  57. Ghitter, G. S., Bowers, W. W. & Franklin, S. E. (1995). Discrimination of adelgid-damage on single balsam fir trees with aerial remote sensing data. International Journal of Remote Sensing, 16, 2779–2794.Google Scholar
  58. Givri, J. R. (1995). Satellite remote sensing data on industrial hazards. Advances in Space Research 15(11), 87–90.Google Scholar
  59. GläBer, C. & Reinartz, P. (2005). Multitemporal and multispectral remote sensing approach for flood detection in the Elbe-Mulde region 2002. Acta hydrochimica et hydrobiologica, 33(5), 395–403.Google Scholar
  60. Global Security Newswire (2007). Pentagon advisers urge nationwide conversion of radioactive-sourced medical, safety gear. Global Security Newswire, 10 October 2007.Google Scholar
  61. Gomez, R. B. (2002). Hyperspectral imaging: A useful technology for transportation analysis. Optical Engineering, 41(9), 2137–2143.Google Scholar
  62. Gorman, B. L., Shankar, M. & Smith, C. M. (2005). Advancing sensor web interoperability. Sensors, 22(4). Retrieved March 19, 2007
  63. Graffis, J. M. (1997). Do the Army and Air Force see eye to eye on BDA? School of Advanced Military Studies, United States Army Command and General Staff College, Fort Leavenworth, KS, 53 p.Google Scholar
  64. Grasty, R. L., Hovgaard, J. & Multala, J. (1997). Airborne gamma ray measurements in the Chernobyl plume. Radiation Protection Dosimetry, 73(1–4), 225–230.Google Scholar
  65. Green, R. O., Eastwood, M. L., Sarture, C. M., Chrien, T. G., Aronsson, M., Chippendale, B. J., Faust, J. A., Pavri, B. E., Chovit, C. J., Solis, M., Olah, M. R. & Williams, O. (1998). Imaging spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). Remote Sensing of Environment, 65, 227–248.Google Scholar
  66. Griffiths, H. D. & Baker, C. J. (2006). Radar imaging for combating terrorism. (In Imaging for detection and identification (pp. 1–19), NATO Advanced Study Institute, 23 July–5 August 2006, Il Ciocco, Italy. The Netherlands: Springer). Retrieved March 24, 2007 from
  67. Gruninger, J., Ratkowski, A. J. & Hoke, M. L. (2004). The Sequential Maximum Angle Convex Cone (SMACC) endmember model. (In Sylvia S. Shen & Paul E. Lewis (Eds.), Algorithms and technologies for multispectral, hyperspectral, and ultraspectral imagery X. (pp. 1–14) Proc. of SPIE, Vol. 5425 (Bellingham, WA: SPIE).Google Scholar
  68. Guenther, W. C. & Terragno, P. J. (1964). A review of the literature on a class of coverage problems. The Annals of Mathematical Statistics, 35(1), 232–260.Google Scholar
  69. Guillaso, S., Ferro-Famil, L., Reigber, A. & Portier, E. (2005). Building characterization using L-band polimetric interferometric SAR data. IEEE Geoscience and Remote Sensing Letters, 2(3), 347–351.Google Scholar
  70. Guo, Q., Kelly, M., Gong, P. & Liu, D. (2007). An object-based classification approach in mapping tree mortality using high spatial resolution imagery. GIScience & Remote Sensing, 44(1), 24–47.Google Scholar
  71. Gupta, V. (1994). Remote sensing and photogrammetry in treaty verification: Present challenges and prospects for the future. Photogrammetric Record, 14(83), 729–745.Google Scholar
  72. Haack, B. K., Guptill, S., Holz, R., Jampoler, S., Jensen, J. R. & Welch, R. (1997). Urban analysis and planning. (In Manual of photographic interpretation (pp. 517–553) Bethesda, MD: American Society for Photogrammetry & Remote Sensing).Google Scholar
  73. Hadjipavlou, S. & Carr-Hill, G. (1989). A revised set of blast casualty rates for civil defence use: An overview. Journal of the Royal Statistical Society. Series A (Statistics in Society), 152(2), 139–156.Google Scholar
  74. Hall, M. (2007a). Phones studied as attack detector. USA Today, 4 May 2007. Retrieved May 5, 2007 from–05–03-cellphone- attack-detector_N.htm.
  75. Hall, M. (2007b). Authorities want to survey city radiation. USA Today, 16 March 2007. Retrieved March 16, 2007 from–03–15-radiation_N.htm?csp = 34.
  76. Hall, S. W., Carolla, M. A. & Deason, J. P. (2006). The use of imagery in environmental disaster preparedness and response. Federal Facilities Environmental Journal, Winter 2006, 65–72. doi: 10.1002/ffej.20075.Google Scholar
  77. Harris, J. W. E. (1974). Small-scale imagery in forest pest surveys in British Columbia. The Canadian Surveyor, 28(2), 155–161.Google Scholar
  78. Hasager, C. B. & Thykier-Nielsen, S. (2001). IRS-1C LISS III land cover maps at different spatial resolutions used in real-time accidental air pollution deposition modelling. Remote Sensing of Environment, 76, 326–336.Google Scholar
  79. Hausamann, D., Zirnig, W., Schreier, G. & Strobl, P. (2005). Monitoring of gas pipelines—a civil UAV application. Aircraft Engineering and Aerospace Technology: An International Journal, 77(5), 352–360.Google Scholar
  80. Hepner, G. F., Houshmand, B., Kulikov, I. & Brayant, N. (1998). Investigation of the integration of AVRIS and IFSAR for urban analysis. Photogrammetric Engineering & Remote Sensing, 64(8), 813–820.Google Scholar
  81. Herbreteau, V., Salem, G., Souris, M., Hugot, J.-P. & Gonzalez, J.-P. (2007). Thirty years of use and improvement of remote sensing, applied to epidemiology: From early promises to lasting frustration. Health Place, 13(2), 400–403.Google Scholar
  82. Herold, M., Gardner, M. E. & Roberts, D. A. (2003). Spectral resolution requirements for mapping urban areas. IEEE Transactions on Geoscience and Remote Sensing, 41(9), 1907–1919.Google Scholar
  83. Herold, M., Schiefer, S., Hostert, P. & Roberts, D. A. (2007). Applying imaging spectroscopy in urban areas. (In Urban remote sensing (pp. 137–161). Boca Raton, FL: CRC).Google Scholar
  84. Herring, C. (2007). When disaster strikes: VIEWS system applies satellite imagery to post-disaster analysis. Earth Imaging Journal. Retrieved February 28, 2007 from
  85. Hjerpe, T., Finck, R. R. & Samuelsson, C. (2001). Statistical data evaluation in mobile gamma spectrometry: An optimization of on-line search strategies in the scenario of lost point sources. Health Physics, 80(6), 563–570.Google Scholar
  86. Houser, P. R. (2002). Air and water monitoring for homeland security. Earth Observation Magazine, 11(8), 33–36.Google Scholar
  87. Hyvönen, E., Pänttäjä, M., Sutinen, M.-J. & Sutinen, R. (2003). Assessing site suitability for Scots pine using airborne terrestrial gamma-ray measurements in Finnish Lapland. Canadian Journal of Forest Research, 33, 796–806.Google Scholar
  88. ImSpec LLC (2002). ACORN 4.0 user’s guide: Stand-alone version. Analytical Imaging and Geophysics LLC. Boulder, CO: ImSpec LLC, 76 p.Google Scholar
  89. Islam, M. M. & Sado, K. (2002). Development priority map for flood countermeasures by remote sensing data with geographic information system. Journal of Hydrologic Engineering, 7(5), 346–355.Google Scholar
  90. Ito, A. (2005). Issues in the implementation of the International Charter on Space and Major Disasters. Space Policy, 21, 141–149.Google Scholar
  91. Jasani, B. (1995). Could civil satellites monitor nuclear tests? Space Policy, 11(1), 31–40.Google Scholar
  92. Javidi, B. (Ed.) (2006). Optical imaging sensors and systems for homeland security applications. (New York: Springer).Google Scholar
  93. Jayaraman, V., Chandrasekhar, M. G. & Rao, U. R. (1997). Managing the natural disasters from space technology inputs. Acta Astronautica, 40(2–8), 291–325.Google Scholar
  94. Jensen, J. R. (2005). Introductory digital image processing: A remote sensing perspective. Third Edition. (Upper Saddle River, NJ: Prentice-Hall).Google Scholar
  95. Jensen, J. R. (2007). Remote sensing of the environment: An earth resource perspective. Second Edition. (Upper Saddle River, NJ: Prentice-Hall).Google Scholar
  96. Jensen, J. R. & Filippi, A. M. (2005). Thematic information extraction: Hyperspectral image analysis. (In Jensen, J. R., Introductory digital image processing: A remote sensing perspective, Third Edition (pp. 431–465). Upper Saddle River, NJ: Prentice-Hall).Google Scholar
  97. Jensen, J. R. & Hodgson, M. E. (2006). Remote sensing of natural and man-made hazards and disasters. (In M. K. Ridd & J. D. Hipple (Eds.), Remote sensing of human settlements, Manual of Remote Sensing, Third Edition, Vol. 5 (pp. 401–428). Bethesda, MD: American Society for Photogrammetry and Remote Sensing).Google Scholar
  98. Kääb, A., Huggel, C., Fischer, L., Guex, S., Paul, F., Roer, I., Salzmann, N., Schlaefli, S., Schmutz, K., Schneider, D., Strozzi, T. & Weidmann, Y. (2005). Remote sensing of glacier- and permafrost-related hazards in high mountains: An overview. Natural Hazards and Earth Systems Sciences, 5, 527–554.CrossRefGoogle Scholar
  99. Kaya, S., Curran, P. J. & Llewellyn, G. (2005). Post-earthquake building collapse: A comparison of government statistics and estimates derived from SPOT HRVIR data. International Journal of Remote Sensing, 26(13), 2731–2740.Google Scholar
  100. Kerle, N., Froger, J.-L., Oppenheimer, C. & Van Wyk De Vries, B. (2003). Remote sensing of the 1998 mudflow at Casita volcano, Nicaragua. International Journal of Remote Sensing, 24(23), 4791–4816.Google Scholar
  101. Kogan, F. N. (1990). Remote sensing of weather impacts on vegetation in nonhonogeneous areas. International Journal of Remote Sensing, 11, 1405–1419.Google Scholar
  102. Kokaly, R. F., Clark, R. N. & Swayze, G. A. (1994). Vegetation and cryptobiotic soils mapping in arid regions. (In Spectral analysis Workshop: The use of vegetation as an indicator of environmental contamination (Nov. 9–10, 1994). Reno, NV: Desert Research Institute).Google Scholar
  103. Kopp, C. (1995). Air warfare applications of laser remote sensing. Air Power Studies Centre Paper No.33, Royal Australian Air Force, June 1995.Google Scholar
  104. Kroutil, R., Lewis, P., Thomas, M., Curry, T., Miller, D., Combs, R. & Cummings, A. (2006). Emergency response chemical detection using passive infrared spectroscopy. SPIE Newsroom, doi: 10.1117/2.1200604.0157, 3 p.Google Scholar
  105. Kruse, F.A. (1990). Thematic mapping with an expert system and imaging spectrometers. (In Advances in spatial information extraction and analysis for remote sensing: The II/VII ISPRS Commission International Workshop Proceedings (January 13–17, 1990) (pp. 59–68). University of Maine, Orno, Maine).Google Scholar
  106. Kruse, F. A., Lefkoff, A. B., Boardman, J. W., Heidebrecht, K. B., Shapiro, A. T., Barloon, P. J. & Goetz, A. F. H. (1993). The Spectral Image Processing System (SIPS)—Interactive visualization and analysis of imaging spectrometer data. Remote Sensing of Environment, 44, 145–163.Google Scholar
  107. Kulesz, J. (2004). SensorNet fact sheet. Oak Ridge National Laboratory, 31 August 2004. Retrieved March 19, 2007 from
  108. Kumar, K. V., Martha, T. R. & Roy, P. S. (2006). Mapping damage in the Jammu and Kashmir caused by 8 October 2005 Mw 7.3 earthquake from the Cartosat-1 and Resourcesat-1 imagery. International Journal of Remote Sensing, 27(20), 4449–4459.Google Scholar
  109. Kwan, C., Ayhan, B., Chen, G., Wang, J., Ji, B. & Chang, C.-I. (2006). A novel approach for spectral unmixing, classification, and concentration estimation of chemical and biological agents. IEEE Transactions on Geoscience and Remote Sensing, 44(2), 409–419.Google Scholar
  110. Laefer, D. F., Koss, A. & Pradhan, A. (2006). The need for baseline data characteristics for GIS-based disaster management systems. Journal of Urban Planning and Development, 132(3), 115–119.Google Scholar
  111. Lancaster, N. & Nickling, W. G. (1994). Aeolian sediment transport. (In A. D. Abrahams & A. J. Parsons (Eds.), Geomorphology of desert environments (pp. 447–473). London: Chapman & Hall).Google Scholar
  112. Lehmann, F., Bucher, T., Hese, S., Hoffmann, A., Mayer, S., Oschuts, F. & Zhang, Y. (1998). Data fusion of HyMAP hyperspectral with HRSC-A multispectral stereo and DTM data: Remote sensing data validation and application in different disciplines. First EARSeL Workshop on Imaging Spectroscopy, University of Zurich, Switzerland, 6–8 October 1998 (Paris: EARSeL), pp. 105–117.Google Scholar
  113. Lévesque, J. & King, D. J. (1999). Airborne digital camera image semivariance for evaluation of forest structural damage at an acid mine site. Remote Sensing of Environment, 68, 112–124.Google Scholar
  114. Levner, I., Bulitko, V., Li, L., Lee, G. & Greiner, R. (2003). Towards automated creation of image interpretation systems. (In T.D. Gedeon & L.C.C. Fung (Eds.). AI 2003: Advances in artificial intelligence. Lecture Notes in Computer Science 2903. (pp. 653–665) Berlin: Springer).Google Scholar
  115. Levy, J. K., Gopalakrishnan, C. & Lin, Z. (2005). Advances in decision support systems Development, 21(4), 593–612.Google Scholar
  116. Li, L., Ustin, S. L. & Lay, M. (2005). Application of AVIRIS data in detection of oil- induced vegetation stress at Jornada, New Mexico. Remote Sensing of Environment, 94, 1–16.Google Scholar
  117. Lichtenthaler, H. K. (1996). Vegetation stress: An introduction to the stress concept in plants. Journal of Plant Physiology, 148, 148–154.Google Scholar
  118. Liu, X. & Herold, M. (2007). Population estimation and interpolation using remote sensing. (In Q. Weng & D. A. Quattrochi (Eds.), Urban remote sensing (pp. 269–290) Boca Raton, FL: CRC).Google Scholar
  119. Lo, C. P. (2006). Estimating population and census data. (In M. K. Ridd & J. D. Hipple (Eds.), Remote sensing of humans settlements, manual of remote sensing, Third Edition, Vol. 5 (pp. 337–377) Bethesda, MD: American Society for Photogrammetry and Remote Sensing).Google Scholar
  120. Lu, Y. H., Trinder, J. C. & Kubik, K. (2006). Automatic building detection using the Dempster-Shafer algorithm. Photogrammetric Engineering & Remote Sensing, 72(4), 395–403.Google Scholar
  121. Mackenzie, D. (2007). Billions at risk from wheat super-blight. New Scientist, 2598, 6–7. Retrieved April 16, 2007 from mg19425983.700-billions-at-risk-from-wheat-superblight.html.
  122. MacKenzie, D. C. (2003). Collaborative tasking of tightly constrained multi-robot missions. (In Schultz et al. (Eds.), Multi-robotsSystems: From swarms to intelligent automata, Proc. second international workshop on multi-robot systems (pp. 39–50). Washington, DC: Kluwer).Google Scholar
  123. Matsuoka, M., Vu, T. T. & Yamazaki, F. (2004). Automated damage detection and visualization of the 2003 Bam, Iran, earthquake using high-resolution satellite images. (In Proceedings of the 25th Asian conference on remote sensing (pp. 841–845)).Google Scholar
  124. McMaster, K. J. (2005). Forest blowdown prediction: A correlation of remotely sensed contributing factors. Northern Journal of Applied Forestry, 22(1), 48–53.Google Scholar
  125. Mikkelsen, T., Larsen, S. E. & Thykier-Nielsen, S. (1984). Description of the Risø puff diffusion model. Nuclear Technology, 67, 56–65.Google Scholar
  126. Mielke, H. W., Powell, E. T., Gonzales, C. R. & Mielke, P. W., Jr. (2006). Hurricane Katrina’s impact on New Orleans soils treated with low lead Mississippi River Alluvium. Environmental Science & Technology, 40(24), 7623–7628.Google Scholar
  127. Mirik, M., Michels, G. J., Jr., Kassymzhanova-Mirik, Elliott, N. C. & Bowling, R. (2006). Hyperspectral spectrometry as a means to differentiate uninfested and infested winter wheat by greenbug (Hemiptera: Aphididae). Journal of Economic Entomology, 99(5), 1682–1690.Google Scholar
  128. Miura, H. & Midorikawa, S. (2006). Updating GIS building inventory data using high-resolution satellite images for earthquake damage assessment: Application to metro Manila, Philippines. Earthquake Spectra, 22(1), 151–168.Google Scholar
  129. Montoya, L. (2003). Geo-data acquisition through mobile GIS and digital video: An urban disaster management perspective. Environmental Modelling & Software, 18, 869–876.Google Scholar
  130. Moshou, D., Bravo, C., Oberti, R., West, J., Bodria, L., McCartney, A. & Ramon, H. (2005). Plant disease detection based on data fusion of hyper-spectral and multi-spectral fluorescence imaging using Kohonen maps. Real-Time Imaging, 11, 75–83.Google Scholar
  131. Moskal, L. M. & Franklin, S. E. (2004). Relationship between airborne multispectral image texture and aspen defoliation. International Journal of Remote Sensing, 25, 2701–2711.Google Scholar
  132. Moulin, C., Rougeault, S., Hamon, D. & Mauchien, P. (1993). Uranium determination by remote time-resolved laser-induced fluorescence. Applied Spectroscopy, 47(12), 2007–2012.Google Scholar
  133. Munger, F. (2006). Thwarting threats: ORNL works to detect terrorist activity, speed flow of info spreads across U.S. map. The Knoxville News Sentinel, 27 February 2006. Retrieved March 19, 2007 from, 1406, KNS_359_4498879, 00.html.
  134. Murtha, P. A. (1976). Vegetation damage and remote sensing: Principal problems and some recommendations. Photogrammetria, 32, 147–156.Google Scholar
  135. Myint S. W., Lam, N. S. -N. & Tyler, J. M. (2004). Wavelets for urban spatial feature discrimination: Comparisons with fractal, spatial autocorrelation, and spatial co-occurrence approaches. Photogrammetric Engineering & Remote Sensing, 70(7), 803–812.Google Scholar
  136. Nourbakhsh, I., Sargent, R., Wright, A., Cramer, K., McClendon, B. & Jones, M. (2006). Mapping disaster zones. Nature, 439, 787–788.Google Scholar
  137. Office of Technology Assessment (1980). The effects of nuclear war. (London: Croom Helm).Google Scholar
  138. Orr, M. & Spohn, H. (1967). A multivariate statistical model for indirect bomb damage assessment. Operations Research, 15(4), 706–719.Google Scholar
  139. Osteraas, J. D. (2006). Murrah Building bombing revisited: A qualitative assessment of blast damage and collapse patterns. Journal of Performance of Constructed Facilities, 20(4), 330–335.Google Scholar
  140. Papastefanou, C. (2006). Residence time of tropospheric aerosols in association with radioactive nuclides. Applied Radiation and Isotopes, 64, 93–100.Google Scholar
  141. Pardue, J. H., Moe, W. M., Mcinnis, D., Thibodeaux, J., Valsaraj, K. T., Maciasz, E., Van Heerden, I., Korevec, N. & Yuan, Q. Z. (2005). Chemical and microbiological parameters in New Orleans floodwater following Hurricane Katrina. Environmental Science & Technology, 39(22), 8591–8599.Google Scholar
  142. Paul, R., Subramanian, S. & Bharadwaj, S. (2006). Creation of digital city model using single high resolution satellite image. Photogrammetric Engineering & Remote Sensing, 72(4), 341–342.Google Scholar
  143. Perissin, D. & Rocca, F. (2006). High-accuracy urban DEM using permanent scatters. IEEE Transactions on Geoscience and Remote Sensing, 44(11), 3338–3347.Google Scholar
  144. Presley, S. M., Rainwater, T. R., Austin, G. P., Platt, S. G., Zak, J. C., Cobb, G. P., Marsland, E. J., Tian, K., Zhang, B., Anderson, T. A., Cox, S. B., Abel, M. T., Leftwich, B. D., Huddleston, J. R., Jeter, R. M. & Kendall, R. J. (2006). Assessment of pathogens and toxicants in New Orleans, LA following hurricane Katrina. Environmental Science & Technology, 40(2), 468–474.Google Scholar
  145. Ramabhushanam, E. & Lynch, M. (1994). Structural assessment of bomb damage for World Trade Center. Journal of Performance of Constructed Facilities, 8(14), 229–242.Google Scholar
  146. Ranson, K. J., Kovacs, K., Sun, G. & Kharuk, V. I. (2003). Disturbance recognition in the boreal forest using radar and Landsat-7. Canadian Journal of Remote Sensing, 29(2), 271–285.Google Scholar
  147. Rauch, J. T., Jr. (2004). Assessing airpower’s effects: Capabilities and limitations of real-time battle damage assessment. Thesis, The School of Advanced Airpower Studies, Maxwell Air Force Base, Alabama: Air University Press, 56 p.Google Scholar
  148. Rejaie, A. & Shinozuka, M. (2004). Reconnaissance of Golcuk 1999 earthquake damage using satellite images. Journal of Aerospace Engineering, 17(1), 20–25.Google Scholar
  149. Ridd, M. K., Bjorgo, E., Camp, L. E., Card, D. H., Chung, J. M., Dudley-Murphy, E. A., Gillies, R. R., Hipple, J. D., Hernandez, M. W., Hofmann, P., Jurgens, C., Lam, N. N. S.-N., Massasati, A. S., Merola, J. A., Mesev, V., Nash, G. D., Quattrochi, D. A. & Wheeler, D. J. (2006). Documenting dynamics of human settlements. (In M. K. Ridd & J. D. Hipple (Eds.), Remote sensing of human settlements. Manual of remote sensing, Third Edition, Vol. 5 (pp. 521–670) Bethesda, MD: American Society for Photogrammetry and Remote Sensing).Google Scholar
  150. Rizzo, V. & Iodice, A. (2006). Satellite differential SAR interferometry for the evaluation of effects of hydrogeological disasters: Definition of a scale for damage evaluation. Annals of Geophysics, 49(1), 253–260.Google Scholar
  151. Rogan, J., Franklin, J. & Roberts, D. A. (2002). A comparison of methods for monitoring multitemporal vegetation change using Thematic Mapper imagery. Remote Sensing of Environment, 80, 143–156.Google Scholar
  152. Rogge, D. M., Rivard, B., Zhang, J. & Feng, J. (2006). Iterative spectral unmixing for optimizing per-pixel endmember sets. IEEE Transactions on Geoscience and Remote Sensing, 44(12), 3725–3736.Google Scholar
  153. Roper, W. E. (2005). Spatial multi-database integration for emergency operations support. International Journal of Technology Transfer and Commercialisation, 4(1), 3–30.Google Scholar
  154. Ross, T. & Lott, N. (2003). A climatology of 1980–2003 extreme weather and climate events. (Asheville: US Department of Commerce NOAA/NESDIS).Google Scholar
  155. Rosso, P. H., Pushnik, J. C., Lay, M. & Ustin, S. L. (2005). Reflectance properties and physiological responses of Salicornia virginica to heavy metal and petroleum contamination. Environmental Pollution, 137, 241–252.Google Scholar
  156. Rycroft, M. J. (2000). From environmental risks, as problems, to earth observations as solutions to those problems. Surveys in Geophysics, 21, 115–125.Google Scholar
  157. Sadowski, F. G. & Covington, S. J. (1987). Processing and analysis of commercial satellite image data of the nuclear accident near Chernobyl, U.S.S.R. U.S. Geological Survey Bulletin 1785, Reston, VA: Department of the Interior, U.S. Geological Survey, U.S. G.P.O., 19 p.Google Scholar
  158. Saito, K., Spence, R. J. S., Going, C. & Markus, M. (2004). Using high-resolution satellite images for post-earthquake building damage assessment: A study following the 26 January 2001 Gujarat earthquake. Earthquake Spectra, 20, 1–25.Google Scholar
  159. Sakamoto, M., Takasago, Y., Uto, K., Kakumoto, S. & Kosugi, Y. (2004). Automatic detection of damaged area of Iran earthquake by high-resolution satellite imagery. Proceedings of IEEE IGARSS, 2, 1418–1421.Google Scholar
  160. Sanderson, D. C. W., Cresswell, A. J., Hardeman, F. & Debauche, A. (2004). An airborne gamma-ray spectrometry survey of nuclear sites in Belgium. Journal of Environmental Radioactivity, 72, 213–224.Google Scholar
  161. San Miguel-Ayanz, J., Vogt, J., De Roo, A. & Schmuck, G. (2000). Natural hazards monitoring: Forest fires, droughts, and floods—The example of European pilot projects. Surveys in Geophysics, 21, 291–305.Google Scholar
  162. Schneider, W. & Steinwender, J. (1999). Landcover mapping by interrelated segmentation and classification of satellite images. International Archives of Photogrammetry and Remote Sensing, 32(Part 7–4–3 W6), Valladolid.Google Scholar
  163. Schowengerdt, R. A. (1997). Remote sensing: Models and methods for image processing. Second Edition. (San Diego, CA: Academic).Google Scholar
  164. Schwartz, P. & Randall, D. (2003). An abrupt climate changes scenario and its implications for United States national security. Global Business Network, Emeryville, CA, October 2003. [Electronic version]. Retrieved April 16, 2007 from = 26231).
  165. Schwarz, G. F., Rybach, L. & Klingelé, E. E. (1997). Design, calibration, and application of an airborne gamma spectrometer system in Switzerland. Geophysics, 62(5), 1369–1378.Google Scholar
  166. Schweitzer, B. & McLeod, B. (1997). Marketing technology that is changing at the speed of light. Earth Observation Magazine, 6(7), 22–24.Google Scholar
  167. Seaman, N. L. (2003). Future directions of meteorology related to air-quality research. Environment International, 29, 245–252.Google Scholar
  168. Shackelford, A. K. & Davis, C. H. (2003). A hierarchical fuzzy classification approach for high-resolution multispectral data over urban areas. IEEE Transactions on Geoscience and Remote Sensing, 41(9), 1920–1932.Google Scholar
  169. Shearer, A. W. (2005). Whether the weather: Comments on ‘An abrupt climate change scenario and its implications for United States national security’. Futures, 37, 445–463.Google Scholar
  170. Shippert, P. (2004). Why use hyperspectral imagery? Photogrammetric Engineering & Remote Sensing, 70(4), 377–80.Google Scholar
  171. Showalter, P. S. (2001). Remote sensing in disaster research: A review. Disaster Prevention and Management, 10(1), 21–29.Google Scholar
  172. Silleos, N., Perakis, K. & Petsanis, G. (2002). Assessment of crop damage using space remote sensing and GIS. International Journal of Remote Sensing, 23(3), 417–427.Google Scholar
  173. Skuterud, L., Goltsova, N. I., Naeumann, R., Sikkeland, T. & Lindmo, T. (1994). Histological changes in Pinus sylvestris L. in the proximal-zone around the Chernobyl power plant. The Science of the Total Environment, 157, 387–397.Google Scholar
  174. Skyttner, L. (2002). Monitoring and early warning systems—A design for human survival. Kybernetes, 31(2), 220–245.Google Scholar
  175. Smith, M. A. J., Dekker, R., Kos, J. & Hontelez, J. A. M. (2001). The availability of unmanned air vehicles: A post-case study. Journal of the Operational Research Society, 52, 161–168.Google Scholar
  176. Song, L.-P., Yu, C. & Liu, Q. H. (2005). Through-wall imaging (TWI) by radar: 2-D tomographic results and analyses, IEEE Transactions on Geoscience and Remote Sensing, 43, 2793–2798.Google Scholar
  177. Soukhova, N. V., Fesenko, S. V., Klein, D., Spiridonov, S. I., Sanzharova, N. I. & Badot, P. M. (2003). 137Cs distribution among annual rings of different tree species contaminated after the Chernobyl accident. Journal of Environmental Radioactivity, 65, 9–28.Google Scholar
  178. Stefanov, W. L., Ramsey, M. S. & Christensen, P. R. (2003). Identification of fugitive dust generation, transport, and deposition areas using remote sensing. Environmental & Engineering Geoscience, 9(2), 151–165.Google Scholar
  179. Stilla, U. & Soergel, U. (2007). Reconstruction of buildings in SAR imagery of urban areas. (In Q. Weng & D. A. Quattrochi (Eds.), Urban remote sensing (pp. 47–67). Boca Raton, FL: CRC).Google Scholar
  180. Stramondo, S., Bignami, C., Chini, M., Pierdicca, N. & Tertulliani, A. (2006). Satellite radar and optical remote sensing for earthquake damage detection: Results from different case studies. International Journal of Remote Sensing, 27(20), 4433–4447.Google Scholar
  181. Stull, R. B. (1991). An introduction to boundary layer meteorology. (Dordrecht, The Netherlands: Kluwer).Google Scholar
  182. Sutton, P. C., Elvidge, C. & Obremski, T. (2003). Building and evaluating models to estimate ambient population density. Photogrammetric Engineering & Remote Sensing, 69(5), 545–553.Google Scholar
  183. Suzuki, R., Masuda, K. & Dye, D. G. (2007). Interannual covariability between actual evapotranspiration and PAL and GIMMS NDVIs of northern Asia. Remote Sensing of Environment, 106, 387–398.Google Scholar
  184. Tobler, W. (1969). Satellite confirmation of settlement size coefficients. Area, 1, 30–34.Google Scholar
  185. Tomás, R., Márquez, Y., Lopez-Sanchez, J. M., Delgado, J., Blanco, P., Mallorquí, J. J., Martínez, M., Herrera, G. & Mulas, J. (2005). Mapping ground subsidence induced by aquifer overexploitation using advanced differential SAR interferometery: Vega Media of the Segura River (SE Spain) case study. Remote Sensing of Environment, 98, 269–283.Google Scholar
  186. Tralli, D. M., Blom, R. G., Zlotnicki, V., Donnellan, A. & Evans, D. L. (2005). Satellite remote sensing of earthquake, volcano, flood, landslide and coastal inundation hazards. ISPRS Journal of Photogrammetry & Remote Sensing, 59, 185–198.Google Scholar
  187. Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8, 127–150.Google Scholar
  188. Tucker, M. & San, B. T. (2003). SPOT HRV data analysis for detecting earthquake- induced changes in Izmit, Turkey. International Journal of Remote Sensing, 24(12), 2439–2450.Google Scholar
  189. Turker, M. & San, B. T. (2004). Detection of collapsed buildings caused by the 1999 Izmit, Turkey, earthquake through digital analysis of post-event aerial photographs. International Journal of Remote Sensing, 25, 4701–4714.Google Scholar
  190. United States, Congress, Senate, Committee on Agriculture, Nutrition, & Forestry (1986). Possible impact on agriculture of the explosion of the Soviet nuclear plant at Chernobyl: Hearing before the Committee on Agriculture, Nutrition, and Forestry, United States Senate, Ninety-ninth Congress, second session, May 15, 1986. S. HRG. 99–718, Washington, DC: U.S. G.P.O., 59 p.Google Scholar
  191. United States, Congress, Joint Economic Committee, Subcommittee on Agriculture and Transportation (1987). The Chernobyl disaster: Implications for world food security and the U.S. farm economy: Hearing before the Subcommittee on Agriculture and Transportation of the Joint Economic Committee, Congress of the United States, Ninety-ninth Congress, second session, May 5, 1986. S. HRG. 99–1029, Washington, DC: U.S. G.P.O., 68 p.Google Scholar
  192. Van der Meer, F. D. (2004). Pixel-based, stratified and contextual analysis of hyperspectral imagery. (In S. M. deJong & F. D. van der Meer (Eds.), Remote sensing image analysis: Including the spatial domain. (pp. 153–180). Dordrecht, The Netherlands: Kluwer).Google Scholar
  193. Van de Voorde, T., De Genst, W. & Canters, F. (2007). Improving pixel-based VHR land-cover classifications of urban areas with post-classification techniques. Photogrammetric Engineering & Remote Sensing, 73(9), 1017–1027.Google Scholar
  194. Vincent, P., Larsen, S., Galloway, D., Laczniak, R. J., Walter, W. R., Foxall, W. & Zucca, J. J. (2003). New signatures of underground nuclear tests revealed by satellite interferometry. Geophysical Research Letters, 30(22), 2141. doi: 10.1029/2003GL018179, 2003.Google Scholar
  195. Vincente-Serrano, S. (2007). Evaluating the impact of drought using remote sensing in a Mediterranean, semi-arid region. Natural Hazards, 40, 173–208.Google Scholar
  196. Volcani, A., Karnieli, A. & Svoray, T. (2005). The use of remote sensing and GIS for spatio-temporal analysis of the physiological state of a semi-arid forest with respect to drought years. Forest Ecology and Management, 215, 239–250.Google Scholar
  197. Vosselman, G. & Dijkman, S. (2001). 3D building model reconstruction from point clouds and ground plans. International Archives of Photogrammetry and Remote Sensing XXXIV-3/W4, Annapolis, MD, 22–24 October 2001, pp. 37–43.Google Scholar
  198. Warner, T. (2005). Hyperspherical direction cosine change vector analysis. International Journal of Remote Sensing, 26(6), 1201–1215.Google Scholar
  199. Wightman, J. M. & Gladish, S. L. (2001). Explosions and blast injuries. Annals of Emergency Medicine, 37(6), 664–678.Google Scholar
  200. Wilhite, D. A. (2000). Drought as a natural hazard: Concepts and definitions. (In D. A. Wilhite (Ed.), Drought: A global assessment, Natural Hazards and Disasters Series (pp. 3–18). London: Routledge).Google Scholar
  201. Williams, J. H. & Ashenden, T. W. (1992). Differences in the spectral characteristics of white clover exposed to gaseous pollutants and acid mist. New Phytologist, 120, 69–75.Google Scholar
  202. Winkelmann, I., Strobl, C. & Thomas, M. (2004). Aerial measurements of artificial radionuclides in Germany in case of a nuclear accident. Journal of Environmental Radioactivity, 72, 225–231.Google Scholar
  203. Winter, M. E. (1999). N-FINDR: An algorithm for fast autonomous spectral end-member determination in hyperspectral data. (In M. R. Descour & S. S. Shen (Eds.), Imaging spectrometry V, Proc. SPIE, Vol. 3753 (pp. 266–275)).Google Scholar
  204. Yang, Y. & Fathy, A. E. (2005). See-through-wall imaging using ultra wideband short- pulse radar system. In IEEE Intl. Antennas and Propagation Symposium, Vol. 3B, pp. 334–337, 3–8 July 2005.Google Scholar
  205. Yonezawa, C. & Takeuchi, S. (2001). Decorrelation of SAR data by urban damages caused by the 1995 Hyogoken-nanbu earthquake. International Journal of Remote Sensing, 22(8), 1585–1600.Google Scholar
  206. Yost, K. A. & Washburn, A. R. (2000). Optimizing assignment of air-to-ground assets and BDA sensors. Military Operations Research, 5(2), 77–91.Google Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • Anthony M. Filippi
    • 1
  1. 1.Texas A&M UniversityUSA

Personalised recommendations