Advertisement

Neural Stem Cells and Neurogenic Niche in the Adult Brain

Part of the Advances in Biomedical Research book series (ABIR, volume 1)

Abstract

The discovery of adult neurogenesis has greatly advanced our knowledge of the human brain. During the past 50 years, the regulatory mechanisms and potential functions of this intriguing process have been extensively investigated. Our current knowledge supports the model that adult neurogenesis is regulated by both intrinsic genetic and epigenetic programs and extrinsic microenvironment and stimuli. This intricate molecular network has profound roles in controlling the self-renewal and multipotency of neural stem cells, the cellular basis of adult neurogenesis. In this review, we will summarize the current knowledge and our recent work in understanding adult neurogenesis with emphasis on answering two questions: how intrinsic epigenetic mechanisms, mediated through histone modifications, non-coding RNAs, and DNA methylation, define the signature of adult neural stem cells, and how extrinsic effects of growth factors, cytokines, and chemokines contribute to the adult neurogenic niche.

Keywords

Adult neurogenesis neural stem cells epigenetics DNA methylation cytokine migration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ming, G. L. & Song, H. (2005) Adult neurogenesis in the mammalian central nervous system. Annu Rev Neurosci 28, 223–50.PubMedGoogle Scholar
  2. 2.
    Zhao, X., Schaffer, D. & Gage, F. (2004) Stem cells in the Nervous System: Functional and Clinical Implications (Springer, Berlin/Heidelberg, Germany).Google Scholar
  3. 3.
    Altman, J. (1962) Are new neurons formed in the brains of adult mammals? Science 135, 1127–8.PubMedGoogle Scholar
  4. 4.
    Altman, J. (1963) Autoradiographic investigation of cell proliferation in the brains of rats and cats. Anat Rec 145, 573–91.PubMedGoogle Scholar
  5. 5.
    Altman, J. & Das, G. D. (1965) Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 124, 319–35.PubMedGoogle Scholar
  6. 6.
    Kaplan, M. S. & Hinds, J. W. (1977) Neurogenesis in the adult rat: electron microscopic analysis of light radioautographs. Science 197, 1092–4.PubMedGoogle Scholar
  7. 7.
    Alvarez-Buylla, A. & Nottebohm, F. (1988) Migration of young neurons in adult avian brain. Nature 335, 353–4.PubMedGoogle Scholar
  8. 8.
    Reynolds, B. A. & Weiss, S. (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255, 1707–10.PubMedGoogle Scholar
  9. 9.
    Pencea, V., Bingaman, K. D., Freedman, L. J. & Luskin, M. B. (2001) Neurogenesis in the subventricular zone and rostral migratory stream of the neonatal and adult primate forebrain. Exp Neurol 172, 1–16.PubMedGoogle Scholar
  10. 10.
    Kornack, D. R. & Rakic, P. (2001) The generation, migration, and differentiation of olfactory neurons in the adult primate brain. Proc Natl Acad Sci U S A 98, 4752–7.PubMedGoogle Scholar
  11. 11.
    Curtis, M. A., Kam, M., Nannmark, U., Anderson, M. F., Axell, M. Z., Wikkelso, C., Holtas, S., van Roon-Mom, W. M., Bjork-Eriksson, T., Nordborg, C., Frisen, J., Dragunow, M., Faull, R. L. & Eriksson, P. S. (2007) Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension. Science 315, 1243–9.PubMedGoogle Scholar
  12. 12.
    Eriksson, P. S., Perfilieva, E., Bjork-Eriksson, T., Alborn, A. M., Nordborg, C., Peterson, D. A. & Gage, F. H. (1998) Neurogenesis in the adult human hippocampus. Nat Med 4, 1313–7.PubMedGoogle Scholar
  13. 13.
    Luskin, M. B. (1993) Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron 11, 173–89.PubMedGoogle Scholar
  14. 14.
    Lois, C., Garcia-Verdugo, J. M. & Alvarez-Buylla, A. (1996) Chain migration of neuronal precursors. Science 271, 978–81.PubMedGoogle Scholar
  15. 15.
    Sanai, N., Tramontin, A. D., Quinones-Hinojosa, A., Barbaro, N. M., Gupta, N., Kunwar, S., Lawton, M. T., McDermott, M. W., Parsa, A. T., Manuel-Garcia Verdugo, J., Berger, M. S. & Alvarez-Buylla, A. (2004) Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature 427, 740–4.PubMedGoogle Scholar
  16. 16.
    Doetsch, F., Garcia-Verdugo, J. M. & Alvarez-Buylla, A. (1997) Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J Neurosci 17, 5046–61.PubMedGoogle Scholar
  17. 17.
    Doetsch, F., Caille, I., Lim, D. A., Garcia-Verdugo, J. M. & Alvarez-Buylla, A. (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97, 703–16.PubMedGoogle Scholar
  18. 18.
    Alvarez-Buylla, A., Herrera, D. G. & Wichterle, H. (2000) The subventricular zone: source of neuronal precursors for brain repair. Prog Brain Res 127, 1–11.PubMedGoogle Scholar
  19. 19.
    Alvarez-Buylla, A. & Lim, D. A. (2004) For the long run: maintaining germinal niches in the adult brain. Neuron 41, 683–6.PubMedGoogle Scholar
  20. 20.
    Smith, C. M. & Luskin, M. B. (1998) Cell cycle length of olfactory bulb neuronal progenitors in the rostral migratory stream. Dev Dyn 213, 220–7.PubMedGoogle Scholar
  21. 21.
    Seri, B., Garcia-Verdugo, J. M., McEwen, B. S. & Alvarez-Buylla, A. (2001) Astrocytes give rise to new neurons in the adult mammalian hippocampus. J Neurosci 21, 7153–60.PubMedGoogle Scholar
  22. 22.
    Kempermann, G., Jessberger, S., Steiner, B. & Kronenberg, G. (2004) Milestones of neuronal development in the adult hippocampus. Trends Neurosci 27, 447–52.PubMedGoogle Scholar
  23. 23.
    Gould, E., Vail, N., Wagers, M. & Gross, C. G. (2001) Adult-generated hippocampal and neocortical neurons in macaques have a transient existence. Proc Natl Acad Sci U S A 98, 10910–7.PubMedGoogle Scholar
  24. 24.
    Gould, E., Reeves, A. J., Graziano, M. S. & Gross, C. G. (1999) Neurogenesis in the neocortex of adult primates. Science 286, 548–52.PubMedGoogle Scholar
  25. 25.
    Kornack, D. R. & Rakic, P. (2001) Cell proliferation without neurogenesis in adult primate neocortex. Science 294, 2127–30.PubMedGoogle Scholar
  26. 26.
    Koketsu, D., Mikami, A., Miyamoto, Y. & Hisatsune, T. (2003) Nonrenewal of neurons in the cerebral neocortex of adult macaque monkeys. J Neurosci 23, 937–42.PubMedGoogle Scholar
  27. 27.
    Zhao, M., Momma, S., Delfani, K., Carlen, M., Cassidy, R. M., Johansson, C. B., Brismar, H., Shupliakov, O., Frisen, J. & Janson, A. M. (2003) Evidence for neurogenesis in the adult mammalian substantia nigra. Proc Natl Acad Sci U S A 100, 7925–30.PubMedGoogle Scholar
  28. 28.
    Lie, D. C., Dziewczapolski, G., Willhoite, A. R., Kaspar, B. K., Shults, C. W. & Gage, F. H. (2002) The adult substantia nigra contains progenitor cells with neurogenic potential. J Neurosci 22, 6639–49.PubMedGoogle Scholar
  29. 29.
    Chen, Y., Ai, Y., Slevin, J. R., Maley, B. E. & Gash, D. M. (2005) Progenitor proliferation in the adult hippocampus and substantia nigra induced by glial cell line-derived neurotrophic factor. Exp Neurol 196, 87–95.PubMedGoogle Scholar
  30. 30.
    Cooper, O. & Isacson, O. (2004) Intrastriatal transforming growth factor alpha delivery to a model of Parkinson’s disease induces proliferation and migration of endogenous adult neural progenitor cells without differentiation into dopaminergic neurons. J Neurosci 24, 8924–31.PubMedGoogle Scholar
  31. 31.
    Frielingsdorf, H., Schwarz, K., Brundin, P. & Mohapel, P. (2004) No evidence for new dopaminergic neurons in the adult mammalian substantia nigra. Proc Natl Acad Sci U S A 101, 10177–82.PubMedGoogle Scholar
  32. 32.
    Kokoeva, M. V., Yin, H. & Flier, J. S. (2007) Evidence for constitutive neural cell proliferation in the adult murine hypothalamus. J Comp Neurol 505, 209–20.PubMedGoogle Scholar
  33. 33.
    Squire, L. R. (1993) The hippocampus and spatial memory. Trends Neurosci 16, 56–7.PubMedGoogle Scholar
  34. 34.
    Kempermann, G., Kuhn, H. G. & Gage, F. H. (1998) Experience-induced neurogenesis in the senescent dentate gyrus. J Neurosci 18, 3206–12.PubMedGoogle Scholar
  35. 35.
    van Praag, H., Kempermann, G. & Gage, F. H. (1999) Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci 2, 266–70.PubMedGoogle Scholar
  36. 36.
    Karten, Y. J., Olariu, A. & Cameron, H. A. (2005) Stress in early life inhibits neurogenesis in adulthood. Trends Neurosci 28, 171–2.PubMedGoogle Scholar
  37. 37.
    Malberg, J. E., Eisch, A. J., Nestler, E. J. & Duman, R. S. (2000) Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci 20, 9104–10.PubMedGoogle Scholar
  38. 38.
    Perera, T. D., Coplan, J. D., Lisanby, S. H., Lipira, C. M., Arif, M., Carpio, C., Spitzer, G., Santarelli, L., Scharf, B., Hen, R., Rosoklija, G., Sackeim, H. A. & Dwork, A. J. (2007) Antidepressant-induced neurogenesis in the hippocampus of adult nonhuman primates. J Neurosci 27, 4894–901.PubMedGoogle Scholar
  39. 39.
    Shors, T. J., Miesegaes, G., Beylin, A., Zhao, M., Rydel, T. & Gould, E. (2001) Neurogenesis in the adult is involved in the formation of trace memories. Nature 410, 372–6.PubMedGoogle Scholar
  40. 40.
    Overstreet-Wadiche, L. S., Bromberg, D. A., Bensen, A. L. & Westbrook, G. L. (2006) Seizures accelerate functional integration of adult-generated granule cells. J Neurosci 26, 4095–103.PubMedGoogle Scholar
  41. 41.
    Parent, J. M. (2007) Adult neurogenesis in the intact and epileptic dentate gyrus. Prog Brain Res 163, 529–817.PubMedGoogle Scholar
  42. 42.
    Parent, J. M., Valentin, V. V. & Lowenstein, D. H. (2002) Prolonged seizures increase proliferating neuroblasts in the adult rat subventricular zone-olfactory bulb pathway. J Neurosci 22, 3174–88.PubMedGoogle Scholar
  43. 43.
    Ohab, J. J., Fleming, S., Blesch, A. & Carmichael, S. T. (2006) A neurovascular niche for neurogenesis after stroke. J Neurosci 26, 13007–16.PubMedGoogle Scholar
  44. 44.
    Jin, K., Wang, X., Xie, L., Mao, X. O., Zhu, W., Wang, Y., Shen, J., Mao, Y., Banwait, S. & Greenberg, D. A. (2006) Evidence for stroke-induced neurogenesis in the human brain. Proc Natl Acad Sci U S A 103, 13198–202.PubMedGoogle Scholar
  45. 45.
    Parent, J. M., Vexler, Z. S., Gong, C., Derugin, N. & Ferriero, D. M. (2002) Rat forebrain neurogenesis and striatal neuron replacement after focal stroke. Ann Neurol 52, 802–13.PubMedGoogle Scholar
  46. 46.
    Kokaia, Z. & Lindvall, O. (2003) Neurogenesis after ischaemic brain insults. Curr Opin Neurobiol 13, 127–32.PubMedGoogle Scholar
  47. 47.
    Yamashita, T., Ninomiya, M., Hernandez Acosta, P., Garcia-Verdugo, J. M., Sunabori, T., Sakaguchi, M., Adachi, K., Kojima, T., Hirota, Y., Kawase, T., Araki, N., Abe, K., Okano, H. & Sawamoto, K. (2006) Subventricular zone-derived neuroblasts migrate and differentiate into mature neurons in the post-stroke adult striatum. J Neurosci 26, 6627–36.PubMedGoogle Scholar
  48. 48.
    Palmer, T. D., Ray, J. & Gage, F. H. (1995) FGF-2-responsive neuronal progenitors reside in proliferative and quiescent regions of the adult rodent brain. Mol Cell Neurosci 6, 474–86.PubMedGoogle Scholar
  49. 49.
    Pencea, V., Bingaman, K. D., Wiegand, S. J. & Luskin, M. B. (2001) Infusion of brain-derived neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum, thalamus, and hypothalamus. J Neurosci 21, 6706–17.PubMedGoogle Scholar
  50. 50.
    van Praag, H., Schinder, A. F., Christie, B. R., Toni, N., Palmer, T. D. & Gage, F. H. (2002) Functional neurogenesis in the adult hippocampus. Nature 415, 1030–4.PubMedGoogle Scholar
  51. 51.
    Schmidt-Hieber, C., Jonas, P. & Bischofberger, J. (2004) Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nature 429, 184–7.PubMedGoogle Scholar
  52. 52.
    Ge, S., Goh, E. L., Sailor, K. A., Kitabatake, Y., Ming, G. L. & Song, H. (2006) GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature 439, 589–93.PubMedGoogle Scholar
  53. 53.
    Zhao, C., Teng, E. M., Summers, R. G., Jr., Ming, G. L. & Gage, F. H. (2006) Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. J Neurosci 26, 3–11.PubMedGoogle Scholar
  54. 54.
    Laplagne, D. A., Esposito, M. S., Piatti, V. C., Morgenstern, N. A., Zhao, C., van Praag, H., Gage, F. H. & Schinder, A. F. (2006) Functional convergence of neurons generated in the developing and adult hippocampus. PLoS Biol 4, e409.PubMedGoogle Scholar
  55. 55.
    Kempermann, G. & Gage, F. H. (2002) Genetic influence on phenotypic differentiation in adult hippocampal neurogenesis. Brain Res Dev Brain Res 134, 1–12.PubMedGoogle Scholar
  56. 56.
    Kempermann, G., Kuhn, H. G. & Gage, F. H. (1997) Genetic influence on neurogenesis in the dentate gyrus of adult mice. Proc Natl Acad Sci U S A 94, 10409–14.PubMedGoogle Scholar
  57. 57.
    Li, L., Liu, F., Salmonsen, R. A., Turner, T. K., Litofsky, N. S., Di Cristofano, A., Pandolfi, P. P., Jones, S. N., Recht, L. D. & Ross, A. H. (2002) PTEN in neural precursor cells: regulation of migration, apoptosis, and proliferation. Mol Cell Neurosci 20, 21–9.PubMedGoogle Scholar
  58. 58.
    Marino, S., Krimpenfort, P., Leung, C., van der Korput, H. A., Trapman, J., Camenisch, I., Berns, A. & Brandner, S. (2002) PTEN is essential for cell migration but not for fate determination and tumourigenesis in the cerebellum. Development 129, 3513–22.PubMedGoogle Scholar
  59. 59.
    Groszer, M., Erickson, R., Scripture-Adams, D. D., Dougherty, J. D., Le Belle, J., Zack, J. A., Geschwind, D. H., Liu, X., Kornblum, H. I. & Wu, H. (2006) PTEN negatively regulates neural stem cell self-renewal by modulating G0–G1 cell cycle entry. Proc Natl Acad Sci U S A 103, 111–6.PubMedGoogle Scholar
  60. 60.
    Wu, Y., Liu, Y., Levine, E. M. & Rao, M. S. (2003) Hes1 but not Hes5 regulates an astrocyte versus oligodendrocyte fate choice in glial restricted precursors. Dev Dyn 226, 675–89.PubMedGoogle Scholar
  61. 61.
    Ishibashi, M., Ang, S. L., Shiota, K., Nakanishi, S., Kageyama, R. & Guillemot, F. (1995) Targeted disruption of mammalian hairy and Enhancer of split homolog-1 (HES-1) leads to up-regulation of neural helix-loop-helix factors, premature neurogenesis, and severe neural tube defects. Genes Dev 9, 3136–48.PubMedGoogle Scholar
  62. 62.
    Jhas, S., Ciura, S., Belanger-Jasmin, S., Dong, Z., Llamosas, E., Theriault, F. M., Joachim, K., Tang, Y., Liu, L., Liu, J. & Stifani, S. (2006) Hes6 inhibits astrocyte differentiation and promotes neurogenesis through different mechanisms. J Neurosci 26, 11061–71.PubMedGoogle Scholar
  63. 63.
    Siegenthaler, J. A. & Miller, M. W. (2005) Transforming growth factor beta 1 promotes cell cycle exit through the cyclin-dependent kinase inhibitor p21 in the developing cerebral cortex. J Neurosci 25, 8627–36.PubMedGoogle Scholar
  64. 64.
    Doetsch, F., Verdugo, J. M., Caille, I., Alvarez-Buylla, A., Chao, M. V. & Casaccia-Bonnefil, P. (2002) Lack of the cell-cycle inhibitor p27Kip1 results in selective increase of transit-amplifying cells for adult neurogenesis. J Neurosci 22, 2255–64.PubMedGoogle Scholar
  65. 65.
    Allen, D. M., van Praag, H., Ray, J., Weaver, Z., Winrow, C. J., Carter, T. A., Braquet, R., Harrington, E., Ried, T., Brown, K. D., Gage, F. H. & Barlow, C. (2001) Ataxia telangiectasia mutated is essential during adult neurogenesis. Genes Dev 15, 554–66.PubMedGoogle Scholar
  66. 66.
    Shi, Y., Chichung Lie, D., Taupin, P., Nakashima, K., Ray, J., Yu, R. T., Gage, F. H. & Evans, R. M. (2004) Expression and function of orphan nuclear receptor TLX in adult neural stem cells. Nature 427, 78–83.PubMedGoogle Scholar
  67. 67.
    Levenson, J. M. & Sweatt, J. D. (2005) Epigenetic mechanisms in memory formation. Nat Rev Neurosci 6, 108–18.PubMedGoogle Scholar
  68. 68.
    Reik, W., Dean, W. & Walter, J. (2001) Epigenetic reprogramming in mammalian development. Science 293, 1089–93.PubMedGoogle Scholar
  69. 69.
    Jenuwein, T. & Allis, C. D. (2001) Translating the histone code. Science 293, 1074–80.PubMedGoogle Scholar
  70. 70.
    Bernstein, E. & Allis, C. D. (2005) RNA meets chromatin. Genes Dev 19, 1635–55.PubMedGoogle Scholar
  71. 71.
    Bernstein, B. E., Meissner, A. & Lander, E. S. (2007) The mammalian epigenome. Cell 128, 669–81.PubMedGoogle Scholar
  72. 72.
    Miremadi, A., Oestergaard, M. Z., Pharoah, P. D. & Caldas, C. (2007) Cancer genetics of epigenetic genes. Hum Mol Genet 16 Spec No 1, R28–R49.PubMedGoogle Scholar
  73. 73.
    Ballas, N., Grunseich, C., Lu, D. D., Speh, J. C. & Mandel, G. (2005) REST and its corepressors mediate plasticity of neuronal gene chromatin throughout neurogenesis. Cell 121, 645–57.PubMedGoogle Scholar
  74. 74.
    Lunyak, V. V., Burgess, R., Prefontaine, G. G., Nelson, C., Sze, S. H., Chenoweth, J., Schwartz, P., Pevzner, P. A., Glass, C., Mandel, G. & Rosenfeld, M. G. (2002) Corepressor-dependent silencing of chromosomal regions encoding neuronal genes. Science 298, 1747–52.PubMedGoogle Scholar
  75. 75.
    Lunyak, V. V. & Rosenfeld, M. G. (2005) No rest for REST: REST/NRSF regulation of neurogenesis. Cell 121, 499–501.PubMedGoogle Scholar
  76. 76.
    Rice, J. C. & Allis, C. D. (2001) Histone methylation versus histone acetylation: new insights into epigenetic regulation. Curr Opin Cell Biol 13, 263–73.PubMedGoogle Scholar
  77. 77.
    Hsieh, J., Nakashima, K., Kuwabara, T., Mejia, E. & Gage, F. H. (2004) Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells. Proc Natl Acad Sci U S A 101, 16659–64.PubMedGoogle Scholar
  78. 78.
    Jessberger, S., Nakashima, K., Clemenson, G. D., Jr., Mejia, E., Mathews, E., Ure, K., Ogawa, S., Sinton, C. M., Gage, F. H. & Hsieh, J. (2007) Epigenetic modulation of seizure-induced neurogenesis and cognitive decline. J Neurosci 27, 5967–75.PubMedGoogle Scholar
  79. 79.
    Shen, S., Li, J. & Casaccia-Bonnefil, P. (2005) Histone modifications affect timing of oligodendrocyte progenitor differentiation in the developing rat brain. J Cell Biol 169, 577–89.PubMedGoogle Scholar
  80. 80.
    Plath, K., Fang, J., Mlynarczyk-Evans, S. K., Cao, R., Worringer, K. A., Wang, H., de la Cruz, C. C., Otte, A. P., Panning, B. & Zhang, Y. (2003) Role of histone H3 lysine 27 methylation in X inactivation. Science 300, 131–5.PubMedGoogle Scholar
  81. 81.
    Torres-Padilla, M. E., Parfitt, D. E., Kouzarides, T. & Zernicka-Goetz, M. (2007) Histone arginine methylation regulates pluripotency in the early mouse embryo. Nature 445, 214–8.PubMedGoogle Scholar
  82. 82.
    Mikkelsen, T. S., Ku, M., Jaffe, D. B., Issac, B., Lieberman, E., Giannoukos, G., Alvarez, P., Brockman, W., Kim, T. K., Koche, R. P., Lee, W., Mendenhall, E., O’Donovan, A., Presser, A., Russ, C., Xie, X., Meissner, A., Wernig, M., Jaenisch, R., Nusbaum, C., Lander, E. S. & Bernstein, B. E. (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448, 553–60.PubMedGoogle Scholar
  83. 83.
    Molofsky, A. V., He, S., Bydon, M., Morrison, S. J. & Pardal, R. (2005) Bmi-1 promotes neural stem cell self-renewal and neural development but not mouse growth and survival by repressing the p16Ink4a and p19Arf senescence pathways. Genes Dev 19, 1432–7.PubMedGoogle Scholar
  84. 84.
    Mattick, J. S. & Makunin, I. V. (2005) Small regulatory RNAs in mammals. Hum Mol Genet 14 Spec No 1, R121–32.PubMedGoogle Scholar
  85. 85.
    Bartel, D. P. (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–97.PubMedGoogle Scholar
  86. 86.
    Ambros, V. (2004) The functions of animal microRNAs. Nature 431, 350–5.PubMedGoogle Scholar
  87. 87.
    Kosik, K. S. (2006) The neuronal microRNA system. Nat Rev Neurosci 7, 911–20.PubMedGoogle Scholar
  88. 88.
    Wu, H., Xu, J., Pang, Z. P., Ge, W., Kim, K. J., Blanchi, B., Chen, C., Sudhof, T. C. & Sun, Y. E. (2007) Integrative genomic and functional analyses reveal neuronal subtype differentiation bias in human embryonic stem cell lines. Proc Natl Acad Sci U S A 104, 13821–6.PubMedGoogle Scholar
  89. 89.
    Landgraf, P., Rusu, M., Sheridan, R., Sewer, A., Iovino, N., Aravin, A., Pfeffer, S., Rice, A., Kamphorst, A. O., Landthaler, M., Lin, C., Socci, N. D., Hermida, L., Fulci, V., Chiaretti, S., Foa, R., Schliwka, J., Fuchs, U., Novosel, A., Muller, R. U., Schermer, B., Bissels, U., Inman, J., Phan, Q., Chien, M., Weir, D. B., Choksi, R., De Vita, G., Frezzetti, D., Trompeter, H. I., Hornung, V., Teng, G., Hartmann, G., Palkovits, M., Di Lauro, R., Wernet, P., Macino, G., Rogler, C. E., Nagle, J. W., Ju, J., Papavasiliou, F. N., Benzing, T., Lichter, P., Tam, W., Brownstein, M. J., Bosio, A., Borkhardt, A., Russo, J. J., Sander, C., Zavolan, M. & Tuschl, T. (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129, 1401–14.PubMedGoogle Scholar
  90. 90.
    Krichevsky, A. M., Sonntag, K. C., Isacson, O. & Kosik, K. S. (2006) Specific microRNAs modulate embryonic stem cell-derived neurogenesis. Stem Cells 24, 857–64.PubMedGoogle Scholar
  91. 91.
    Visvanathan, J., Lee, S., Lee, B., Lee, J. W. & Lee, S. K. (2007) The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development. Genes Dev 21, 744–9.PubMedGoogle Scholar
  92. 92.
    Makeyev, E. V., Zhang, J., Carrasco, M. A. & Maniatis, T. (2007) The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell 27, 435–48.PubMedGoogle Scholar
  93. 93.
    Ashraf, S. I. & Kunes, S. (2006) A trace of silence: memory and microRNA at the synapse. Curr Opin Neurobiol 16, 535–9.PubMedGoogle Scholar
  94. 94.
    Schratt, G. M., Tuebing, F., Nigh, E. A., Kane, C. G., Sabatini, M. E., Kiebler, M. & Greenberg, M. E. (2006) A brain-specific microRNA regulates dendritic spine development. Nature 439, 283–9.PubMedGoogle Scholar
  95. 95.
    Jones, P. A. & Takai, D. (2001) The role of DNA methylation in mammalian epigenetics. Science 293, 1068–70.PubMedGoogle Scholar
  96. 96.
    Jaenisch, R. & Bird, A. (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33 Suppl, 245–54.PubMedGoogle Scholar
  97. 97.
    Bird, A. (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16, 6–21.PubMedGoogle Scholar
  98. 98.
    Takizawa, T., Nakashima, K., Namihira, M., Ochiai, W., Uemura, A., Yanagisawa, M., Fujita, N., Nakao, M. & Taga, T. (2001) DNA methylation is a critical cell-intrinsic determinant of astrocyte differentiation in the fetal brain. Dev Cell 1, 749–58.PubMedGoogle Scholar
  99. 99.
    Klose, R. J. & Bird, A. P. (2006) Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci 31, 89–97.PubMedGoogle Scholar
  100. 100.
    Jorgensen, H. F., Ben-Porath, I. & Bird, A. P. (2004) Mbd1 is recruited to both methylated and nonmethylated CpGs via distinct DNA binding domains. Mol Cell Biol 24, 3387–95.PubMedGoogle Scholar
  101. 101.
    Fujita, N., Watanabe, S., Ichimura, T., Ohkuma, Y., Chiba, T., Saya, H. & Nakao, M. (2003) MCAF mediates MBD1-dependent transcriptional repression. Mol Cell Biol 23, 2834–43.PubMedGoogle Scholar
  102. 102.
    Klose, R. J., Sarraf, S. A., Schmiedeberg, L., McDermott, S. M., Stancheva, I. & Bird, A. P. (2005) DNA binding selectivity of MeCP2 due to a requirement for A/T sequences adjacent to methyl-CpG. Mol Cell 19, 667–78.PubMedGoogle Scholar
  103. 103.
    Fujita, N., Watanabe, S., Ichimura, T., Tsuruzoe, S., Shinkai, Y., Tachibana, M., Chiba, T. & Nakao, M. (2003) Methyl-CpG binding domain 1 (MBD1) interacts with the Suv39h1-HP1 heterochromatic complex for DNA methylation-based transcriptional repression. J Biol Chem 278, 24132–8.PubMedGoogle Scholar
  104. 104.
    Sarraf, S. A. & Stancheva, I. (2004) Methyl-CpG binding protein MBD1 couples histone H3 methylation at lysine 9 by SETDB1 to DNA replication and chromatin assembly. Mol Cell 15, 595–605.PubMedGoogle Scholar
  105. 105.
    Setoguchi, H., Namihira, M., Kohyama, J., Asano, H., Sanosaka, T. & Nakashima, K. (2006) Methyl-CpG binding proteins are involved in restricting differentiation plasticity in neurons. J Neurosci Res 84, 969–79.PubMedGoogle Scholar
  106. 106.
    Zhao, X., Ueba, T., Christie, B. R., Barkho, B., McConnell, M. J., Nakashima, K., Lein, E. S., Eadie, B. D., Willhoite, A. R., Muotri, A. R., Summers, R. G., Chun, J., Lee, K. F. & Gage, F. H. (2003) Mice lacking methyl-CpG binding protein 1 have deficits in adult neurogenesis and hippocampal function. Proc Natl Acad Sci U S A 100, 6777–82.PubMedGoogle Scholar
  107. 107.
    Ueba, T., Kaspar, B., Zhao, X. & Gage, F. H. (1999) Repression of human fibroblast growth factor 2 by a novel transcription factor. J Biol Chem 274, 10382–7.PubMedGoogle Scholar
  108. 108.
    Gage, F. H. (2002) Neurogenesis in the adult brain. J Neurosci 22, 612–3.PubMedGoogle Scholar
  109. 109.
    Garcia, A. D., Doan, N. B., Imura, T., Bush, T. G. & Sofroniew, M. V. (2004) GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain. Nat Neurosci 7, 1233–41.PubMedGoogle Scholar
  110. 110.
    Palmer, T. D., Markakis, E. A., Willhoite, A. R., Safar, F. & Gage, F. H. (1999) Fibroblast growth factor-2 activates a latent neurogenic program in neural stem cells from diverse regions of the adult CNS. J Neurosci 19, 8487–97.PubMedGoogle Scholar
  111. 111.
    Goldman, S. A. & Sim, F. (2005) Neural progenitor cells of the adult brain. Novartis Found Symp 265, 66–80; discussion 82–97.PubMedGoogle Scholar
  112. 112.
    Shihabuddin, L. S., Horner, P. J., Ray, J. & Gage, F. H. (2000) Adult spinal cord stem cells generate neurons after transplantation in the adult dentate gyrus. J Neurosci 20, 8727–35.PubMedGoogle Scholar
  113. 113.
    Lie, D. C., Colamarino, S. A., Song, H. J., Desire, L., Mira, H., Consiglio, A., Lein, E. S., Jessberger, S., Lansford, H., Dearie, A. R. & Gage, F. H. (2005) Wnt signalling regulates adult hippocampal neurogenesis. Nature 437, 1370–5.PubMedGoogle Scholar
  114. 114.
    Tanigaki, K., Nogaki, F., Takahashi, J., Tashiro, K., Kurooka, H. & Honjo, T. (2001) Notch1 and Notch3 instructively restrict bFGF-responsive multipotent neural progenitor cells to an astroglial fate. Neuron 29, 45–55.PubMedGoogle Scholar
  115. 115.
    Ahn, S. & Joyner, A. L. (2005) In vivo analysis of quiescent adult neural stem cells responding to Sonic hedgehog. Nature 437, 894–7.PubMedGoogle Scholar
  116. 116.
    Kuo, C. T., Mirzadeh, Z., Soriano-Navarro, M., Rasin, M., Wang, D., Shen, J., Sestan, N., Garcia-Verdugo, J., Alvarez-Buylla, A., Jan, L. Y. & Jan, Y. N. (2006) Postnatal deletion of Numb/Numblike reveals repair and remodeling capacity in the subventricular neurogenic niche. Cell 127, 1253–64.PubMedGoogle Scholar
  117. 117.
    Zhao, X., Lein, E. S., He, A., Smith, S. C., Aston, C. & Gage, F. H. (2001) Transcriptional profiling reveals strict boundaries between hippocampal subregions. J Comp Neurol 441, 187–96.PubMedGoogle Scholar
  118. 118.
    Song, H., Stevens, C. F. & Gage, F. H. (2002) Astroglia induce neurogenesis from adult neural stem cells. Nature 417, 39–44.PubMedGoogle Scholar
  119. 119.
    Palmer, T. D., Willhoite, A. R. & Gage, F. H. (2000) Vascular niche for adult hippocampal neurogenesis. J Comp Neurol 425, 479–94.PubMedGoogle Scholar
  120. 120.
    Cao, L., Jiao, X., Zuzga, D. S., Liu, Y., Fong, D. M., Young, D. & During, M. J. (2004) VEGF links hippocampal activity with neurogenesis, learning and memory. Nat Genet 36, 827–35.PubMedGoogle Scholar
  121. 121.
    Fabel, K., Fabel, K., Tam, B., Kaufer, D., Baiker, A., Simmons, N., Kuo, C. J. & Palmer, T. D. (2003) VEGF is necessary for exercise-induced adult hippocampal neurogenesis. Eur J Neurosci 18, 2803–12.PubMedGoogle Scholar
  122. 122.
    Jin, K., Zhu, Y., Sun, Y., Mao, X. O., Xie, L. & Greenberg, D. A. (2002) Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc Natl Acad Sci U S A 99, 11946–50.PubMedGoogle Scholar
  123. 123.
    Shen, Q., Goderie, S. K., Jin, L., Karanth, N., Sun, Y., Abramova, N., Vincent, P., Pumiglia, K. & Temple, S. (2004) Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science 304, 1338–40.PubMedGoogle Scholar
  124. 124.
    Wurmser, A. E. & Gage, F. H. (2002) Stem cells: cell fusion causes confusion. Nature 416, 485–7.PubMedGoogle Scholar
  125. 125.
    Barkho, B. Z., Song, H., Aimone, J. B., Smrt, R. D., Kuwabara, T., Nakashima, K., Gage, F. H. & Zhao, X. (2006) Identification of astrocyte-expressed factors that modulate neural stem/progenitor cell differentiation. Stem Cells Dev 15, 407–21.PubMedGoogle Scholar
  126. 126.
    Lein, E. S., Zhao, X. & Gage, F. H. (2004) Defining a molecular atlas of the hippocampus using DNA microarrays and high-throughput in situ hybridization. J Neurosci 24, 3879–89.PubMedGoogle Scholar
  127. 127.
    Monje, M. L., Toda, H. & Palmer, T. D. (2003) Inflammatory blockade restores adult hippocampal neurogenesis. Science 302, 1760–5.PubMedGoogle Scholar
  128. 128.
    Chojnacki, A., Shimazaki, T., Gregg, C., Weinmaster, G. & Weiss, S. (2003) Glycoprotein 130 signaling regulates Notch1 expression and activation in the self-renewal of mammalian forebrain neural stem cells. J Neurosci 23, 1730–41.PubMedGoogle Scholar
  129. 129.
    Song, M. R. & Ghosh, A. (2004) FGF2-induced chromatin remodeling regulates CNTF-mediated gene expression and astrocyte differentiation. Nat Neurosci 7, 229–35.PubMedGoogle Scholar
  130. 130.
    Bienvenu, G., Seurin, D., Grellier, P., Froment, P., Baudrimont, M., Monget, P., Le Bouc, Y. & Babajko, S. (2004) Insulin-like growth factor binding protein-6 transgenic mice: postnatal growth, brain development, and reproduction abnormalities. Endocrinology 145, 2412–20.PubMedGoogle Scholar
  131. 131.
    Hausser, H., Groning, A., Hasilik, A., Schonherr, E. & Kresse, H. (1994) Selective inactivity of TGF-beta/decorin complexes. FEBS Lett 353, 243–5.PubMedGoogle Scholar
  132. 132.
    Popa-Wagner, A., Carmichael, S. T., Kokaia, Z., Kessler, C. & Walker, L. C. (2007) The response of the aged brain to stroke: too much, too soon? Curr Neurovasc Res 4, 216–27.PubMedGoogle Scholar
  133. 133.
    Lim, D. A., Tramontin, A. D., Trevejo, J. M., Herrera, D. G., Garcia-Verdugo, J. M. & Alvarez-Buylla, A. (2000) Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron 28, 713–26.PubMedGoogle Scholar
  134. 134.
    Ramirez-Castillejo, C., Sanchez-Sanchez, F., Andreu-Agullo, C., Ferron, S. R., Aroca-Aguilar, J. D., Sanchez, P., Mira, H., Escribano, J. & Farinas, I. (2006) Pigment epithelium-derived factor is a niche signal for neural stem cell renewal. Nat Neurosci 9, 331–9.PubMedGoogle Scholar
  135. 135.
    Asensio, V. C. & Campbell, I. L. (1999) Chemokines in the CNS: plurifunctional mediators in diverse states. Trends Neurosci 22, 504–12.PubMedGoogle Scholar
  136. 136.
    Imitola, J., Park, K. I., Teng, Y. D., Nisim, S., Lachyankar, M., Ourednik, J., Mueller, F. J., Yiou, R., Atala, A., Sidman, R. L., Tuszynski, M., Khoury, S. J. & Snyder, E. Y. (2004) Stem cells: cross-talk and developmental programs. Philos Trans R Soc Lond B Biol Sci 359, 823–37.PubMedGoogle Scholar
  137. 137.
    Zhang, H., Vutskits, L., Pepper, M. S. & Kiss, J. Z. (2003) VEGF is a chemoattractant for FGF-2-stimulated neural progenitors. J Cell Biol 163, 1375–84.PubMedGoogle Scholar
  138. 138.
    Tettamanti, G., Malagoli, D., Benelli, R., Albini, A., Grimaldi, A., Perletti, G., Noonan, D. M., de Eguileor, M. & Ottaviani, E. (2006) Growth factors and chemokines: a comparative functional approach between invertebrates and vertebrates. Curr Med Chem 13, 2737–50.PubMedGoogle Scholar
  139. 139.
    Tran, P. B., Ren, D., Veldhouse, T. J. & Miller, R. J. (2004) Chemokine receptors are expressed widely by embryonic and adult neural progenitor cells. J Neurosci Res 76, 20–34.PubMedGoogle Scholar
  140. 140.
    Shibata, T., Yamada, K., Watanabe, M., Ikenaka, K., Wada, K., Tanaka, K. & Inoue, Y. (1997) Glutamate transporter GLAST is expressed in the radial glia-astrocyte lineage of developing mouse spinal cord. J Neurosci 17, 9212–9.PubMedGoogle Scholar
  141. 141.
    Toresson, H., Mata de Urquiza, A., Fagerstrom, C., Perlmann, T. & Campbell, K. (1999) Retinoids are produced by glia in the lateral ganglionic eminence and regulate striatal neuron differentiation. Development 126, 1317–26.PubMedGoogle Scholar
  142. 142.
    Ellis, P., Fagan, B. M., Magness, S. T., Hutton, S., Taranova, O., Hayashi, S., McMahon, A., Rao, M. & Pevny, L. (2004) SOX2, a persistent marker for multipotential neural stem cells derived from embryonic stem cells, the embryo or the adult. Dev Neurosci 26, 148–65.PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  1. 1.Department of NeurosciencesUniversity of New Mexico School of MedicineAlbuquerqueUSA

Personalised recommendations