Research Methods for Pharmacoepidemiology Studies

  • Maribel Salas
  • Bruno Stricker

Abstract

Pharmacoepidemiology (PE) applies epidemiologic concepts to clinical pharmacology. This discipline was born on 1960s and since then various methods and techniques have been developed to design and analyze medications’ data.1 This chapter will review the factors involved in the selection of the type of pharmacoepidemiologic study design, and advantages and disadvantages of these designs. Since other chapters describe randomized clinical trials in detail, we will focus on observational studies.

Keywords

Corticosteroid Aspirin Cimetidine Salicylate Celecoxib 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Strom B, Kimmel S. Textbook of Pharmacoepidemiology. Hoboken, NJ: Wiley; 2006.CrossRefGoogle Scholar
  2. 2.
    Miller, JL. Troglitazone withdrawn from market. Am J Health Syst Pharm. May 1, 2000; 57(9):834.Google Scholar
  3. 3.
    Gale EA. Lessons from the glitazones: a story of drug development. Lancet. June 9, 2001; 357(9271):1870–1875.PubMedCrossRefGoogle Scholar
  4. 4.
    Scheen AJ. Thiazolidinediones and liver toxicity. Diabetes Metab. June 2001; 27(3):305–313.PubMedGoogle Scholar
  5. 5.
    Glessner MR, Heller DA. Changes in related drug class utilization after market withdrawal of cisapride. Am J Manag Care. Mar 2002; 8(3):243–250.PubMedGoogle Scholar
  6. 6.
    Griffin JP. Prepulsid withdrawn from UK & US markets. Adverse Drug React Toxicol Rev. Aug 2000; 19(3):177.PubMedGoogle Scholar
  7. 7.
    Graham DJ, Staffa JA, Shatin D, et al. Incidence of hospitalized rhabdomyolysis in patients treated with lipid-lowering drugs. JAMA. Dec 1, 2004; 292(21):2585–2590.PubMedCrossRefGoogle Scholar
  8. 8.
    Piorkowski JD, Jr. Bayer’s response to “potential for conflict of interest in the evaluation of suspected adverse drug reactions: use of cerivastatin and risk of rhabdomyolysis.” JAMA. Dec 1, 2004; 292(21):2655–2657; discussion 2658–2659.PubMedCrossRefGoogle Scholar
  9. 9.
    Strom BL. Potential for conflict of interest in the evaluation of suspected adverse drug reactions: a counterpoint. JAMA. Dec 1, 2004; 292(21):2643–2646.PubMedCrossRefGoogle Scholar
  10. 10.
    Wooltorton E. Bayer pulls cerivastatin (Baycol) from market. CMAJ. Sept 4, 2001; 165(5):632.PubMedGoogle Scholar
  11. 11.
    Juni P, Nartey L, Reichenbach S, Sterchi R, Dieppe PA, Egger M. Risk of cardiovascular events and rofecoxib: cumulative meta-analysis. Lancet. Dec 4–10, 2004; 364(9450):2021–2029.PubMedCrossRefGoogle Scholar
  12. 12.
    Sibbald B. Rofecoxib (Vioxx) voluntarily withdrawn from market. CMAJ. Oct 26, 2004; 171(9):1027–1028.PubMedGoogle Scholar
  13. 13.
    Wong M, Chowienczyk P, Kirkham B. Cardiovascular issues of COX-2 inhibitors and NSAIDs. Aust Fam Physician. Nov 2005; 34(11):945–948.PubMedGoogle Scholar
  14. 14.
    Antoniou K, Malamas M, Drosos AA. Clinical pharmacology of celecoxib, a COX-2 selective inhibitor. Expert Opin Pharmacother. Aug 2007; 8(11):1719–1732.PubMedCrossRefGoogle Scholar
  15. 15.
    Sun SX, Lee KY, Bertram CT, Goldstein JL. Withdrawal of COX-2 selective inhibitors rofecoxib and valdecoxib: impact on NSAID and gastroprotective drug prescribing and utilization. Curr Med Res Opin. Aug 2007; 23(8):1859–1866.PubMedCrossRefGoogle Scholar
  16. 16.
    Prentice RL, Langer R, Stefanick ML, et al. Combined postmenopausal hormone therapy and cardiovascular disease: toward resolving the discrepancy between observational studies and the Women’s Health Initiative clinical trial. Am J Epidemiol. Sept 1, 2005; 162(5):404–414.PubMedCrossRefGoogle Scholar
  17. 17.
    Dubach UC, Rosner B, Sturmer T. An epidemiologic study of abuse of analgesic drugs. Effects of phenacetin and salicylate on mortality and cardiovascular morbidity (1968 to 1987). N Engl J Med. Jan 17, 1991; 324(3):155–160.PubMedGoogle Scholar
  18. 18.
    Elseviers MM, De Broe ME. A long-term prospective controlled study of analgesic abuse in Belgium. Kidney Int. Dec 1995; 48(6):1912–1919.PubMedCrossRefGoogle Scholar
  19. 19.
    Morlans M, Laporte JR, Vidal X, Cabeza D, Stolley PD. End-stage renal disease and non-narcotic analgesics: a case-control study. Br J Clin Pharmacol. Nov 1990; 30(5):717–723.PubMedGoogle Scholar
  20. 20.
    Murray TG, Stolley PD, Anthony JC, Schinnar R, Hepler-Smith E, Jeffreys JL. Epidemiologic study of regular analgesic use and end-stage renal disease. Arch Intern Med. Sept 1983; 143(9):1687–1693.PubMedCrossRefGoogle Scholar
  21. 21.
    Perneger TV, Whelton PK, Klag MJ. Risk of kidney failure associated with the use of acetaminophen, aspirin, and nonsteroidal antiinflammatory drugs. N Engl J Med. Dec 22, 1994; 331(25):1675–1679.PubMedCrossRefGoogle Scholar
  22. 22.
    Piotrow PT, Kincaid DL, Rani M, Lewis G. Communication for Social Change. Baltimore, MD: The Rockefeller Foundation and Johns Hopkins Center for Communication Programs; 2002.Google Scholar
  23. 23.
    Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs diuretic: the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). JAMA. Dec 18, 2002; 288(23):2981–2997.Google Scholar
  24. 24.
    Pilote L, Abrahamowicz M, Rodrigues E, Eisenberg MJ, Rahme E. Mortality rates in elderly patients who take different angiotensin-converting enzyme inhibitors after acute myocardial infarction: a class effect? Ann Intern Med. July 20, 2004; 141(2):102–112.PubMedGoogle Scholar
  25. 25.
    Schneider LS, Tariot PN, Dagerman KS, et al. Effectiveness of atypical antipsychotic drugs in patients with Alzheimer’s disease. N Engl J Med. Oct 12, 2006; 355(15):1525–1538.PubMedCrossRefGoogle Scholar
  26. 26.
    Schneeweiss S. Developments in post-marketing comparative effectiveness research. Clin Pharmacol Ther. Aug 2007; 82(2):143–156.PubMedCrossRefGoogle Scholar
  27. 27.
    Mellin GW, Katzenstein M. The saga of thalidomide. Neuropathy to embryopathy, with case reports of congenital anomalies. N Engl J Med. Dec 13, 1962; 267:1238–1244 concl.PubMedCrossRefGoogle Scholar
  28. 28.
    Food and Drug Administration. Medwatch Website. http://www.fda/gov/medwatch. Accessed Aug 20, 2007.
  29. 29.
    Humphries TJ, Myerson RM, Gifford LM, et al. A unique postmarket outpatient surveillance program of cimetidine: report on phase II and final summary. Am J Gastroenterol. Aug 1984; 79(8):593–596.PubMedGoogle Scholar
  30. 30.
    Stricker BH, Blok AP, Claas FH, Van Parys GE, Desmet VJ. Hepatic injury associated with the use of nitrofurans: a clinicopathological study of 52 reported cases. Hepatology. May–June 1988; 8(3):599–606.PubMedCrossRefGoogle Scholar
  31. 31.
    Martin A, Leslie D. Trends in psychotropic medication costs for children and adolescents, 1997–2000. Arch Pediatr Adolesc Med. Oct 2003; 157(10):997–1004.PubMedCrossRefGoogle Scholar
  32. 32.
    Williams P, Bellantuono C, Fiorio R, Tansella M. Psychotropic drug use in Italy: national trends and regional differences. Psychol Med. Nov 1986; 16(4):841–850.PubMedCrossRefGoogle Scholar
  33. 33.
    Paulose-Ram R, Hirsch R, Dillon C, Losonczy K, Cooper M, Ostchega Y. Prescription and non-prescription analgesic use among the US adult population: results from the third National Health and Nutrition Examination Survey (NHANES III). Pharmacoepidemiol Drug Saf. June 2003; 12(4):315–326.PubMedCrossRefGoogle Scholar
  34. 34.
    Paulose-Ram R, Jonas BS, Orwig D, Safran MA. Prescription psychotropic medication use among the U.S. adult population: results from the third National Health and Nutrition Examination Survey, 1988–1994. J Clin Epidemiol. Mar 2004; 57(3):309–317.PubMedCrossRefGoogle Scholar
  35. 35.
    Strom B. Study Designs Available for Pharmacoepidemiology Studies. Pharmacoepidemiology. 3rd. ed: Wiley; 2000.Google Scholar
  36. 36.
    Risks of agranulocytosis and aplastic anemia. A first report of their relation to drug use with special reference to analgesics. The International Agranulocytosis and Aplastic Anemia Study. JAMA. Oct 3, 1986; 256(13):1749–1757.CrossRefGoogle Scholar
  37. 37.
    Wilcox AJ, Baird DD, Weinberg CR, Hornsby PP, Herbst AL. Fertility in men exposed prenatally to diethylstilbestrol. N Engl J Med. May 25, 1995; 332(21):1411–1416.PubMedCrossRefGoogle Scholar
  38. 38.
    Clark DA, Stinson EB, Griepp RB, Schroeder JS, Shumway NE, Harrison DC. Cardiac transplantation in man. VI. Prognosis of patients selected for cardiac transplantation. Ann Intern Med. July 1971; 75(1):15–21.PubMedGoogle Scholar
  39. 39.
    Messmer BJ, Nora JJ, Leachman RD, Cooley DA. Survival-times after cardiac allografts. Lancet. May 10, 1969; 1(7602):954–956.PubMedCrossRefGoogle Scholar
  40. 40.
    Gail MH. Does cardiac transplantation prolong life? A reassessment. Ann Intern Med. May 1972; 76(5):815–817.PubMedGoogle Scholar
  41. 41.
    Donahue JG, Weiss ST, Livingston JM, Goetsch MA, Greineder DK, Platt R. Inhaled steroids and the risk of hospitalization for asthma. JAMA. Mar 19, 1997; 277(11):887–891.PubMedCrossRefGoogle Scholar
  42. 42.
    Fan VS, Bryson CL, Curtis JR, et al. Inhaled corticosteroids in chronic obstructive pulmonary disease and risk of death and hospitalization: time-dependent analysis. Am J Respir Crit Care Med. Dec 15, 2003; 168(12):1488–1494.PubMedCrossRefGoogle Scholar
  43. 43.
    Kiri VA, Vestbo J, Pride NB, Soriano JB. Inhaled steroids and mortality in COPD: bias from unaccounted immortal time. Eur Respir J. July 2004; 24(1):190–191; author reply 191–192.PubMedCrossRefGoogle Scholar
  44. 44.
    Mamdani M, Rochon P, Juurlink DN, et al. Effect of selective cyclooxygenase 2 inhibitors and naproxen on short-term risk of acute myocardial infarction in the elderly. Arch Intern Med. Feb 24, 2003; 163(4):481–486.PubMedCrossRefGoogle Scholar
  45. 45.
    Suissa S. Observational studies of inhaled corticosteroids in chronic obstructive pulmonary disease: misconstrued immortal time bias. Am J Respir Crit Care Med. Feb 15, 2006; 173(4):464; author reply 464–465.PubMedGoogle Scholar
  46. 46.
    Suissa S. Immortal time bias in observational studies of drug effects. Pharmacoepidemiol Drug Saf. Mar 2007; 16(3):241–249.PubMedCrossRefGoogle Scholar
  47. 47.
    Suissa S. Effectiveness of inhaled corticosteroids in chronic obstructive pulmonary disease: immortal time bias in observational studies. Am J Respir Crit Care Med. July 1, 2003; 168(1):49–53.PubMedCrossRefGoogle Scholar
  48. 48.
    Clayton D, Hills M, eds. Time-Varying Explanatory Variables. Statistical models in epidemiology. Oxford: Oxford University Press; 1993:307–318.Google Scholar
  49. 49.
    Sato T. Risk ratio estimation in case-cohort studies. Environ Health Perspect. 1994; 102(8):53–56.PubMedGoogle Scholar
  50. 50.
    van der Klauw MM, Stricker BH, Herings RM, Cost WS, Valkenburg HA, Wilson JH. A population based case-cohort study of drug-induced anaphylaxis. Br J Clin Pharmacol. Apr 1993; 35(4):400–408.PubMedGoogle Scholar
  51. 51.
    Bernatsky S, Boivin JF, Joseph L, et al. The relationship between cancer and medication exposures in systemic lupus erythematosus: a case-cohort study. Ann Rheum Dis. June 1, 2007.Google Scholar
  52. 52.
    Maclure M. The case-crossover design: a method for studying transient effects on the risk of acute events. Am J Epidemiol. Jan 15, 1991; 133(2):144–153.PubMedGoogle Scholar
  53. 53.
    Maclure M, Mittleman MA. Should we use a case-crossover design? Annu Rev Public Health. 2000; 21:193–221.PubMedCrossRefGoogle Scholar
  54. 54.
    Marshall RJ, Jackson RT. Analysis of case-crossover designs. Stat Med. Dec 30, 1993; 12(24):2333–2341.PubMedCrossRefGoogle Scholar
  55. 55.
    Donnan PT, Wang J. The case-crossover and case-time-control designs in pharmacoepidemiology. Pharmacoepidemiol Drug Saf. May 2001; 10(3):259–262.PubMedCrossRefGoogle Scholar
  56. 56.
    Barbone F, McMahon AD, Davey PG, et al. Association of road-traffic accidents with benzodiazepine use. Lancet. Oct 24, 1998; 352(9137):1331–1336.PubMedCrossRefGoogle Scholar
  57. 57.
    Handoko KB, Zwart-van Rijkom JE, Hermens WA, Souverein PC, Egberts TC. Changes in medication associated with epilepsy-related hospitalisation: a case-crossover study. Pharmacoepidemiol Drug Saf. Feb 2007; 16(2):189–196.PubMedCrossRefGoogle Scholar
  58. 58.
    Greenland S. A unified approach to the analysis of case-distribution (case-only) studies. Stat Med. Jan 15 1999; 18(1):1–15.PubMedCrossRefGoogle Scholar
  59. 59.
    Scneeweiss S, Sturner TMM. Case-crossover and case = time-control designs as alternatives in pharmacoepidemiologic research. Pharmacoepidemiol Drug Saf. 1997; 6(suppl 3):S51–59.CrossRefGoogle Scholar
  60. 60.
    Suissa S. The case-time-control design. Epidemiology. May 1995; 6(3):248–253.PubMedCrossRefGoogle Scholar
  61. 61.
    Salas M, Hofman A, Stricker BH. Confounding by indication: an example of variation in the use of epidemiologic terminology. Am J Epidemiol. June 1, 1999; 149(11):981–983.PubMedGoogle Scholar
  62. 62.
    Stukel TA, Fisher ES, Wennberg DE, Alter DA, Gottlieb DJ, Vermeulen MJ. Analysis of observational studies in the presence of treatment selection bias: effects of invasive cardiac management on AMI survival using propensity score and instrumental variable methods. JAMA. Jan 17, 2007; 297(3):278–285.PubMedCrossRefGoogle Scholar
  63. 63.
    D’Agostino RB, Jr. Propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group. Stat Med. Oct 15, 1998; 17(19):2265–2281.PubMedCrossRefGoogle Scholar
  64. 64.
    Morant SV, Pettitt D, MacDonald TM, Burke TA, Goldstein JL. Application of a propensity score to adjust for channelling bias with NSAIDs. Pharmacoepidemiol Drug Saf. June 2004; 13(6):345–353.PubMedCrossRefGoogle Scholar
  65. 65.
    Ahmed A, Husain A, Love TE, et al. Heart failure, chronic diuretic use, and increase in mortality and hospitalization: an observational study using propensity score methods. Eur Heart J. June 2006; 27(12):1431–1439.PubMedCrossRefGoogle Scholar
  66. 66.
    Rosenbaum PR, Rubin DB. The central role of the propensity score in observational studies for causal effects. Biometrika. 1983; 70(41–55).Google Scholar
  67. 67.
    Rosenbaum PR, Rubin DB. Reducing bias in observational studies using subclassification on the propensity score. J AM Stat Assoc. 1984; 79:516–524.CrossRefGoogle Scholar
  68. 68.
    Austin PC, Mamdani MM, Stukel TA, Anderson GM, Tu JV. The use of the propensity score for estimating treatment effects: administrative versus clinical data. Stat Med. May 30, 2005; 24(10):1563–1578.PubMedCrossRefGoogle Scholar
  69. 69.
    Braitman LE, Rosenbaum PR. Rare outcomes, common treatments: analytic strategies using propensity scores. Ann Intern Med. Oct 15, 2002; 137(8):693–695.PubMedGoogle Scholar
  70. 70.
    Harrell FE. Regression Modeling Strategies with Applications to Linear Models, Logistic Regression and Survival Analysis. New York: Springer; 2001.Google Scholar
  71. 71.
    McClellan M, McNeil BJ, Newhouse JP. Does more intensive treatment of acute myocardial infarction in the elderly reduce mortality? Analysis using instrumental variables. JAMA. Sept 21, 1994; 272(11):859–866.PubMedCrossRefGoogle Scholar
  72. 72.
    Newhouse JP, McClellan M. Econometrics in outcomes research: the use of instrumental variables. Annu Rev Public Health. 1998; 19:17–34.PubMedCrossRefGoogle Scholar
  73. 73.
    Harris KM, Remler DK. Who is the marginal patient? Understanding instrumental variables estimates of treatment effects. Health Serv Res. Dec 1998; 33(5 Pt 1):1337–1360.PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • Maribel Salas
    • 1
  • Bruno Stricker
    • 2
    • 3
  1. 1.Department of Medicine and School of Public HealthUniversity of Alabama at BirminghamBirmingham
  2. 2.Department of Epidemiology & BiostatisticsErasmus University Medical SchoolRotterdam
  3. 3.Drug Safety UnitInspectorate for Health CareThe HagueThe Netherlands

Personalised recommendations