Skip to main content

The Role of Allelopathy for Harmful Algae Bloom Formation

  • Conference paper
Algal Toxins: Nature, Occurrence, Effect and Detection

Abstract

Strong evidence has accumulated on the last years that some algal species are able to kill not only their grazers but also other algal species, a process called allelopathy. Killing the nutrient-competing phytoplankton species enable these species to freely utilize limiting resources such as nitrogen and phosphorus. While for some algal species, like e.g. the flagellate Prymnesium sp., the allelochemicals seem to be the same substances as their toxins, for some other algal species they are not. Alexandrium spp. are among the latter case: their internal toxins (such as saxitoxins) are not able to inhibit the growth of other algal species. However, these species by producing other substances than their internal toxins also cause allelopathic effects. Emphasis is placed here on the flagellate species Prymnesium parvum; which is not only able of allelopathy but mixotrophy as well. Mixotrophy, i.e. the capability to ingest bacteria, other algae and even potential grazers, also contributes to the bloom-forming ability of Prymnesium spp. Allelopathy, mixotrophy and grazer deterrence increase dramatically when Prymnesium spp. cells are grown under N or P deficiency, and so does toxicity, but decrease in intensity or cease completely if cells are grown with high amounts of N and P in balanced proportions. Prymnesium filtrates from nutrient deficient cultures have almost the same strong effect on grazers and other plankton cells as Prymnesium cells grown together with their target. It seems that toxin production in Prymnesium spp. works not only as a defense mechanism, but also, by killing competitors, improve the algae competitive ability under conditions of severe nutrient depletion. We can assume thus that a consequence of the increased input of N and P to aquatic ecosystems is provoking an unbalanced nutrient situation for Prymnesium spp., as well as many of the other HAB species producing toxins, to growth but ideal to produce toxins instead.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, J. I., Anderson, D., Burford, M., Dyhrman, S., Flynn, K., Glibert, P. M., Granéli, E., Heil, C., Sellner, K., Smayda, T., Zhou, M., 2006, Global ecology and oceanography of harmful algal blooms, harmful algal blooms in eutrophic systems. P. Glibert, ed., GEOHAB report 4, IOC and SCOR, Paris and Baltimore, pp. 74.

    Google Scholar 

  • Anderson, D. M., 1989. Toxic algal blooms and red tides: a global perspective. In: Okaichi, Anderson, D. M. and Nemoto, T., eds., Red Tides: Biology, Environmental Science and Toxicology. Elsevier. pp. 11-16.

    Google Scholar 

  • Arzul, G., Seguel, M., Guzman, L., Erard-Le Denn, E., 1999, Comparison of allelopathic properties in three toxic Alexandrium species, J. Exp. Mar. Biol. Ecol. 232: 285-295.

    Article  Google Scholar 

  • Bagchi, S. N., and Marwah, J. B., 1994, Production of an algicide from cyanobacterium Fischerella species which inhibits photosynthetic electron transport, Microbios 79: 187-193.

    CAS  Google Scholar 

  • Chauhan, V. S., Marwah, J. B., Bagchi, S. N., 1992, Effect of an antibiotic from Oscillatoria sp. on phytoplankters higher plants and mice, New Phytol. 120: 251-257.

    Article  CAS  Google Scholar 

  • Christoffersen, K., Lyck, S., Winding, A., 2002, Microbial activity and bacterial community structure during degradation of microcystins, Aquat. Microb. Ecol. 27: 125-136.

    Article  Google Scholar 

  • de Figueiredo, D. R., Azeiteiro, U. M., Goncalves, F., Pereira, M. J., 2004, Aphanizomenon flos-aquae grown under different nutrient concentrations and the effects of its exudates on growth of two green algae. Freshen. Environ, Bull. 13: 657-664.

    CAS  Google Scholar 

  • Edvardsen, B., Moy, F., Paasche, E., 1990, Hemolytic activity in extracts of Chrysochromulina polylepis grown at different levels of selenite and phosphate. In: Toxic marine phyto-plankton, E. Granéli, B. Sundstöm, L. Edler, and D. M. Anderson, eds., Elsevier, New York, pp. 284-289.

    Google Scholar 

  • Einhellig, F. A., 1995, Allelopathy: Current status and future goals. In: Allelopathy: organisms, processes and applications. In: Inderjit, K. M. M. Dakshini, F. A. Einhellig, eds., ACS Symp. Ser. 582: 1-24.

    Google Scholar 

  • Figueredo, C. C., Giani, A., Bird, D. F., 2007, Does allelopathy contribute to Cylindrospermopsis raciborskii (cyanobacteria) bloom occurrence and geographic expansion?, J. Phycol. 43: 256-265.

    Article  Google Scholar 

  • Fistarol, G. O., Legrand, C., Granéli, E., 2003, Allelopathic effect of Prymnesium parvum on a natural plankton community, Mar. Ecol. Prog. Ser. 255: 115-125.

    Article  Google Scholar 

  • Fistarol, G. O., Legrand, C., Selander, E., Hummert, C., Stolte, W., Granéli, E., 2004a, Allelopathy in Alexandrium spp.: effect on a natural plankton community and on algal monocultures. Aquat. Microb. Ecol. 35: 45-56.

    Article  Google Scholar 

  • Fistarol, G. O., Legrand, C., Rengefors, K., Granéli, E., 2004b, Temporary cyst formation in phytoplankton: a response to allelopathic competitors? Environ. Microbiol. 6: 791-798.

    Article  Google Scholar 

  • Fistarol, G. O., Legrand, C., Granéli, E., 2005, Allelopathic effect on a nutrient-limited phytoplankton species, Aquat. Microb. Ecol. 41: 153-161.

    Article  Google Scholar 

  • Gleason, F. K., and Paulson, J. L., 1984, Site of action of the natural algicide, cyanobacterin, in the blue-green alga, Synechococcus sp., Arch. Microbiol. 138: 273-277.

    CAS  Google Scholar 

  • Granéli, E., and Flynn, K., 2006, Chemical and physical factors influencing toxin content. In: E. Granéli, and J. Turner, eds., Ecology of harmful algae. Ecological Studies, Springer, Heidelberg, 189: 229-241.

    Chapter  Google Scholar 

  • Granéli, E., and Hansen, P. J., 2006. Allelopathy in harmful algae: A mechanism to compete for resources? In: E. Granéli, and J. Turner, eds., Ecology of harmful algae., Ecological Studies, Springer, Heidelberg, 189: 189-201.

    Chapter  Google Scholar 

  • Granéli, E., and Johansson, N., 2003, Increase in the production of allelopathic substances by Prymnesium parvum cells grown under N- or P-deficient conditions. Harmful Algae 2: 135-145.

    Article  CAS  Google Scholar 

  • Granéli, E., and Pavia, H., 2006, Allelopathy in marine ecosystems. In: M. J. Reigosa, N. Pedrol, and L. González, eds., Allelopathy: A Physiological Process With Ecological Implications. Springer, The Netherlands, pp. 415-431.

    Google Scholar 

  • Granéli, E., and Weberg, M., 2008, Harmful algal blooms of allelopathic species: the role of eutrophication, Harmful Algae.

    Google Scholar 

  • Gross, E. M., 2003, Allelopathy of aquatic autotrophs. Crit. Rev. Plant. Sci. 22: 313-339.

    Article  Google Scholar 

  • Gross, E. M., Wolk, C. P., Jüttner, F., 1991, Fischerellin, a new allelochemical from the freshwater cyanobacterium Fischerella muscicola, J. Phycol. 27: 686-692.

    Article  CAS  Google Scholar 

  • Hagström, J. A., Granéli, E., Maneiro, I., Barreiro, A., Petermann, A., Svensen, C., 2007, Release and degradation of amnesic shellfish poison from decaying Pseudo-nitzschia multiseries in presence of bacteria and organic matter, Harmful Algae 6:175-188.

    Article  CAS  Google Scholar 

  • Hairston, N. G., Holtmeier, C. L., Lampert, W., Weider, L. J., Post, D. M., Fischer, J. M., Caceres, C. E., Fox, J. A., Gaedke, U., 2001, Natural selection for grazer resistance to toxic cyanobacteria: evolution of phenotypic plasticity? Evolution 55: 2203-2214.

    Article  PubMed  Google Scholar 

  • Hallegraeff, G. M., 1993, A review of harmful algal blooms and their apparent global increase. Phycologia 32: 79-99.

    Google Scholar 

  • Hansen, P. J., 2002, Effect of high pH on the growth and survival of marine phytoplankton: implications for species succession. Aquat. Microb. Ecol. 28: 279-288.

    Article  Google Scholar 

  • Hansen, E., Ernstsen, A., Eilertsen, H. C., 2004, Isolation and characterisation of a cytotoxic polyunsaturated aldehyde from the marine phytoplankter Phaeocystis pouchetii (Hariot) Lagerheim, Toxicology 199: 207-217.

    Article  PubMed  CAS  Google Scholar 

  • Hinga, K. R., 1992, Co-occurrence of dinoflagellate blooms and high pH in marine enclosures. Mar. Ecol. Prog. Ser. 86:181-187.

    Article  Google Scholar 

  • Hirata, K., Takashina, J., Nakagami, H., Ueyama, S., Murakami, K., Kanamori, T., Miyamoto, K., 1996, Growth inhibition of various organisms by a violet pigment, Nostocine A, produced by Nostoc spongiaeforme, Biosci. Biotech. Bioch. 60: 1905-1906.

    Article  CAS  Google Scholar 

  • Hirata, K., Yoshitomi, S., Dwi, S., Iwabe, O., Mahakhant, A., Polchai, J., Miyamoto, K., 2003, Bioactivities of Nostocine A produced by a freshwater cyanobacterium Nostoc spongiaeforme TISTR 8169, J. Biosci. Bioeng. 95: 512-517.

    PubMed  CAS  Google Scholar 

  • Huntley, M., Sykes, P., Rohan, S., Marin, V., 1986, Chemically-mediated rejection of dino-flagellate prey by the copepods Calanus pacificus and Paracalanus parvus: mechanism, occurrence and significance. Mar. Ecol. Prog. Ser. 28: 105-120.

    Article  Google Scholar 

  • Igarashi, T., Oshima, Y., Murata, M., Yasumoto, T., 1995, Chemical studies on prymnesins isolated from Prymnesium parvum. In: P. Lassus, G. Arzul, E. Erard-Le Denn, P. Gentien, and C. Marcaillou-Le Baut, eds., Harmful marine algal blooms: proceedings of the Sixth International Conference on Toxic Marine Phytoplankton, October 1993, Nantes, France. Lavoisier Publishing, Paris, pp. 303-308.

    Google Scholar 

  • Igarashi, T., Aritake, S., Yasumoto, T., 1998, Biological activities of Prymnesin-2 isolated from a red tide alga Prymnesium parvum, Nat. Toxins 6: 35-41.

    Article  PubMed  CAS  Google Scholar 

  • Inderjit, S., and Dakshini, K. M. M., 1994, Algal allelopathy, The Botanical Review 60: 182-196.

    Article  Google Scholar 

  • Johansson, N., and Graneli, E., 1999a, Cell density, chemical composition and toxicity of Chrysochromulina polylepis (Haptophyta) in relation to different N:P supply ratios. Mar. Biol. 135: 209-217.

    Article  CAS  Google Scholar 

  • Johansson, N., and Graneli, E., 1999b, Influence of different nutrient conditions on cell density, chemical composition and toxicity of Prymnesium parvum (Haptophyta) in semi-continuous cultures. J. Exp. Mar. Biol. Ecol. 239: 243-258.

    Article  CAS  Google Scholar 

  • Kearns, K. D., and Hunter, M. D., 2001, Toxin-producing Anabaena flos-aquae induces settling of Chlamydomonas reinhardtii, a competing motile alga, Microb. Ecol. 42: 80-86.

    PubMed  CAS  Google Scholar 

  • Keating, K. I. 1999, Allelochemistry in plankton communities. In: Inderjit, K. M. M. Dakshini, and C. L. Foy, (eds.) Principles and Practices in Plant Ecology: allelochemicals interactions. CRC Press, London, pp. 165-178.

    Google Scholar 

  • Keating, K. I., 1977, Allelopathic influence on blue-green bloom sequence in a eutrophic lake. Science 196: 885-887.

    Article  PubMed  CAS  Google Scholar 

  • Kubanek, J., Hicks, M. K., Naar, J., Villareal, T. A., 2005, Does the red tide dinoflagellate Karenia brevis use allelopathy to outcompete other phytoplankton? Limnol. Oceanogr. 50: 883-895.

    Google Scholar 

  • Larsen, A., and Bryant, S., 1998, Growth and toxicity in Prymnesium parvum and Prymnesium patelliferum (Haptophyta) in response to changes in salinity, light and temperature, Sarsia 83: 409-418.

    Google Scholar 

  • Legrand, C., Rengefors, K., Fistarol, G. O., Granéli, E., 2003, Allelopathy in phytoplankton - biochemical, ecological and evolutionary aspects. Phycologia 42: 406-419.

    Article  Google Scholar 

  • Lewis, W. M. Jr., 1986, Evolutionary interpretation of allelochemical interactions in phytoplankton algae. The American Naturalist 127: 184-194.

    Article  Google Scholar 

  • Mulderij, G., Van Donk, E., Roelofs, G. M., 2003. Differential sensitivity of green algae to allelopathic substances from Chara. Hydrobiologia, 491: 261-271

    Article  Google Scholar 

  • Murphy, T. P., Lean, D. R. S., Nalewajko, C., 1976, Blue-green algae: their excretion of iron-selective chelators enables them to dominate other algae, Science 192: 900-902.

    Article  PubMed  CAS  Google Scholar 

  • Myklestad, S. M., Ramlo, B., Hestmann, S., 1995, Demonstration of strong interaction between the flagellate Chrysochromulina polylepis (Prymnesiophyceae) and a marine diatom, In: P. Lassus, G. Arzul, E. Erard-Le Denn, P. Gentien, C. Marcaillou-Le Baut, eds., Harmful marine algal blooms. Lavoisier Pub., Paris, pp. 633-638.

    Google Scholar 

  • Parnas, I., Reich, K., Bergmann, F., 1962. Photoinactivation of ichthyotoxin from axenic cultures of Prymnesium parvum Carter. Appl. Microbiol. 10: 237-239.

    PubMed  CAS  Google Scholar 

  • Pegler, K., and Kempe, S., 1988, The carbonate system of the North Sea: determination of alkalinity and TCO2 and calculation of PCO2 and Slcal (spring 1986). Mitt. Geol.-Paleont. Inst. Univ. Hamburg, 65: 35-87.

    Google Scholar 

  • Pratt, D. M., 1966, Competition between Skeletonema costatum and Olisthodiscus luteus in Narragansett Bay and in culture. Limnol. Oceanogr. 11: 447-455.

    Article  Google Scholar 

  • Ray, S., and Bagchi, S. N., 2001, Nutrients and pH regulate algicide accumulation in cultures of the cyanobacterium Oscillatoria laetevirens. New Phytol. 149: 455-460.

    Article  CAS  Google Scholar 

  • Reguera, B., and Oshima, Y., 1990, Responses of Gyrodinium catenatum to increasing levels of nitrate: growth patterns and toxicity, In: E. Granéli, B. Sundström, L. Edler, and D. M. Anderson, eds., Toxic Marine Phytoplankton, Elsevier, New York, pp. 316-319.

    Google Scholar 

  • Reich, K., and Parnas, I., 1962, Effect of illumination on ichthyotoxin in and axenic culture of Prymnesium parvum Carter. J. Protozool. 9: 38-40.

    Google Scholar 

  • Reigosa, M. J., Sánchez-Moreiras, A., González, L., 1999, Ecophysiological approach in allelopathy. Critical Reviews in Plant Science 18: 577-608.

    Article  CAS  Google Scholar 

  • Rengefors, K., and Legrand, C., 2001, Toxicity in Peridinium aciculiferum - an adaptative strategy to outcompete other winter phytoplankton? Limnol. Oceanogr. 46: 1990-1997.

    Article  CAS  Google Scholar 

  • Rice, E. L., 1984, Allelopathy, 2nd ed. Academic Press, Orlando, Florida, pp. 423.

    Google Scholar 

  • Rizvi, S. J. H., Haque, H., Singh, V. K., Rizvi, V., 1992, A discipline called allelopathy, In: S. J. H. Rizvi, and V. Rizvi, V., eds., Allelopathy: basic and applied aspects. Chapman and Hall, London, pp. 1-19.

    Google Scholar 

  • Schagerl, M., Unterrieder, I., Angeler, D. G., 2002, Allelopathy among cyanoprokaryota and other algae originating from Lake Neusiedlersee (Austria), Int. Rev. Hydrobiol. 87: 365-374.

    Article  Google Scholar 

  • Schmidt, L. E., and Hansen, P. J., 2001, Allelopathy in the prymnesiophyte Chrysochromulina polylepis: effect of cell concentration, growth phase and pH. Mar. Ecol. Prog. Ser. 216: 67-81.

    Article  CAS  Google Scholar 

  • Skovgaard, A., and Hansen, P. J., 2003, Food uptake in the harmful Prymnesium parvum mediated by excreted toxins. Limnol. Oceanogr. 48: 1161-1166.

    Article  CAS  Google Scholar 

  • Skovgaard, A., Legrand, C., Hansen, P. J., Granéli, E., 2003, Effects of nutrient limitation on food uptake in the toxic haptophyte Prymnesium parvum. Aquat. Microb. Ecol. 31: 259-265.

    Article  Google Scholar 

  • Smayda, T. J., 1990, Novel and nuisance phytoplankton blooms in the sea: evidence for a global epidemic. In: E. Granéli, B. Sundström, L. Edler, and D. M. Anderson, eds., Toxic Marine Phytoplankton, Elsevier, New York, pp. 29-40.

    Google Scholar 

  • Smayda, T. J., 1997, Harmful algal blooms: their ecophysiology and general relevance to phytoplankton blooms in the sea. Limnol. Oceanogr. 42: 1137-1153.

    Article  Google Scholar 

  • Sugg, L. M., and VanDolah, F. M., 1999, No evidence for an allelopathic role of okadaic acid among ciguatera-associated dinoflagellates. J. Phycol. 35: 93-103.

    Article  CAS  Google Scholar 

  • Sukenik, A., Eshkol, R., Livne, A., Hadas, O., Rom, M., Tchernov, D., Vardi, A., Kaplan, A., 2002, Inhibition of growth and photosynthesis of the dinoflagellate Peridinium gatunense by Microcystis sp. (cyanobacteria): A novel allelopathic mechanism, Limnol. Oceanogr. 47: 1656-1663.

    Article  Google Scholar 

  • Suikkanen, S., Engström-Öst, J., Jokela, J., Sivonen, K., Viitasalo, M., 2006, Allelopathy of Baltic Sea cyanobacteria: no evidence for the role of Nodularin. J. Plankton. Res. 28: 543-550.

    Article  CAS  Google Scholar 

  • Suikkanen, S., Fistarol, G. O., Granéli, E., 2004, Allelopathic effects of the Baltic cyanobac-teria Nodularia spumigena, Aphanizomenon flos-aquae and Anabaena lemmermannii on algal monocultures. J. Exp. Mar. Biol. Ecol. 308: 85-101.

    Article  Google Scholar 

  • Suikkanen, S., Fistarol, G. O., Granéli, E., 2005, Effects of cyanobacterial allelochemicals on a natural plankton community. Mar. Ecol. Prog. Ser. 287: 1-9.

    Article  Google Scholar 

  • Tang, C. S., Cai, W. F., Kohl, K., Nishimoto, R. K., 1995, Plant stress and allelopathy. Allelopathy, American Chemical Societ 582: 142-157.

    CAS  Google Scholar 

  • Tillmann, U., 2003, Kill and eat your predator: a winning strategy of the planktonic flagellate Prymnesium parvum, Aquat. Microb. Ecol. 32: 73-84.

    Article  Google Scholar 

  • Tillmann, U., and John, U., 2002, Toxic effects of Alexandrium spp. on heterotrophic dinoflagellates: an allelochemical defence mechanism independent of PSP-toxin content. Mar. Ecol. Prog. Ser. 230: 47-58.

    Article  CAS  Google Scholar 

  • Tillmann, U., John, U., Cembella, A., 2007, On the allelochemical potency of the marine dinoflagellate Alexandrium ostenfeldii against heterotrophic and autotrophic protists. J. Plankton. Res. 29: 527-543.

    Article  Google Scholar 

  • Twist, H., and Cood, G. A., 1997, Degradation of the cyanobacterial hepatotoxin, nodularin, under light and dark conditions. FEMS Microbiology Letters 151: 83-88.

    Article  PubMed  CAS  Google Scholar 

  • Uchida, T., Toda, S., Matsuyama, Y., Yamaguchi, M., Kotani, Y., Honjo, T., 1999, Interactions between the red tide dinoflagellates Heterocapsa circularisquama and Gimnodinium mikimotoi in laboratory culture, J. Exp. Mar. Biol. Ecol. 241: 285-299.

    Article  Google Scholar 

  • Van Dolah, F. M., 2000, Marine algal toxins: origins, health effects, and their increased occurrence. Environ. Health Persp. 108: 133-141.

    Article  CAS  Google Scholar 

  • van Rijssel, M., Alderkamp, A. -C., Nejstgaard, J. C., Sazhin, A. F., Verity, P. G., 2007, Hae-molytic activity of live Phaeocystis pouchetii during mesocosm blooms. Biogeochemistry 83: 189-200.

    Article  Google Scholar 

  • Vardi, A., Schatz, D., Beeri, K., Motro, U., Sukenik, A., Levine, A., Kaplan, A., 2002, Dinoflagellate-cyanobacteria communication may determine the composition of phytoplan-kton assemblege in a mesotrophic lake. Current Biol. 12: 1767-1772.

    Article  CAS  Google Scholar 

  • Wang, Y., Yu, Z., Song, X., Zhang, S., 2006, Interactions between the bloom-forming dinoflagellates Prorocentrum donghaiense and Alexandrium tamarense in laboratory cultures, J. Sea Res. 56: 17-26.

    Article  CAS  Google Scholar 

  • Willis, R. J., 1985, The hystorical bases of the concept of allelopathy. J. Hist. Biol. 18: 71-102.

    Article  Google Scholar 

  • Windust, A. J., Quilliam, M. A., Wright, J. L. C., McLachlan, J. L., 1997, Comparative toxicity of diarrhetic shellfish poisons, okadaic acid, okadaic acid diol-ester and dinophysistoxin-4, to the diatom Thalassiosira weissflogii. Toxicon 35: 1591-1603.

    Article  PubMed  CAS  Google Scholar 

  • Wolfe, G. V., 2000, The chemical defense ecology of marine unicellular plankton: constraints, mechanisms, and impacts. Biol. Bull. 198: 225-244.

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki, Y., Nagasoe, S., Matsubara, T., Shikata, T., Shimasaki, Y., Oshima, Y., Honjo, T., 2007, Allelopathic interactions between the bacillariophyte Skeletonema costatum and and the raphidophyte Heterosigma akashiwo, Mar. Ecol. Prog. Ser. 339: 83-92.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edna Granéli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V.

About this paper

Cite this paper

Granéli, E., Salomon, P.S., Fistarol, G.O. (2008). The Role of Allelopathy for Harmful Algae Bloom Formation. In: Evangelista, V., Barsanti, L., Frassanito, A.M., Passarelli, V., Gualtieri, P. (eds) Algal Toxins: Nature, Occurrence, Effect and Detection. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8480-5_5

Download citation

Publish with us

Policies and ethics