Skip to main content

Hydrogen Peroxide in Green Oxidation Reactions: Recent Catalytic Processes

  • Conference paper

Part of the book series: NATO Science for Peace and Security Series ((NAPSC))

Abstract

Hydrogen peroxide constitutes a potentially green and environmentally-friendly oxidant because it releases only water as by-product. Thus, much efforts have been put into the research for ideal conditions for its use in oxidation reactions. This chapter focuses on the recent applications of hydrogen peroxide in epoxidation reactions catalyzed by transition metal catalysts, illustrating both homogeneous and heterogeneous catalysis. An overview of the recent findings in asymmetric catalytic epoxidations is also given.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. A. Sheldon, Consider the environmental quotient, CHEMTECH 3, 38-47 (1994).

    Google Scholar 

  2. J. -E. Bäckvall, 2004, Modern Oxidation Methods, WILEY-VCH, Weinheim.

    Book  Google Scholar 

  3. B. M. Trost, The atom economy: a search for synthetic efficiency, Science 254, 1471-1477 (1991).

    Article  CAS  Google Scholar 

  4. a) J. T. Groves, R. Quinn, Aerobic epoxidation of olefins with ruthenium porphyrin catalysts, J. Am. Chem. Soc. 107, 5790-5792 (1985). b) C. Döbler, G. Mehltretter, M. Beller, Atom-efficient oxidation of alkenes with molecular oxygen: synthesis of diols, Angew. Chem. Int. Ed. 38, 3026-3028 (1999).

    Google Scholar 

  5. J. M. Campos-Martin, G. Blanco-Brieva, J. L. G. Fierro, Hydrogen peroxide synthesis, an outlook beyond the anthraquinone process, Angew. Chem. Int. Ed. 45, 6962-6984 (2006).

    Article  CAS  Google Scholar 

  6. C. Venturello, R. D’Aloisio, J. C. J. Bart, M. Ricci, A new peroxotungsten heteropoly anion with special oxidizing properties: synthesis and structure of tetrahexylammonium tetra(diperoxotungsto)phosphate(3-), J. Mol. Catal. 32, 107-110 (1985).

    Article  CAS  Google Scholar 

  7. C. Venturello, E. Alneri, M. Ricci, A new, effective catalytic system for epoxidation of olefins by hydrogen peroxide under phase-transfer conditions, J. Org. Chem. 48, 3831-3833 (1983).

    Article  CAS  Google Scholar 

  8. K. Kamata, K. Yonehara, Y. Sumida, K. Yamaguchi, S. Hikichi, N. Mizuno, Efficient epoxidation of olefins with ≥99% selectivity and use of hydrogen peroxide, Science 300, 964-966 (2003).

    Article  CAS  Google Scholar 

  9. K. Sato, M. Aoki, M. Ogawa, T. Hashimoto, R. Noyori, A practical method for epoxidation of terminal olefins with 30% hydrogen peroxide under halide-free conditions, J. Org. Chem. 61, 8310-8311 (1996).

    Article  CAS  Google Scholar 

  10. M. Taramasso, G. Perego, B. Notari US Pat. 1983, 4.410.501.

    Google Scholar 

  11. M. G. Clerici, P. Ingallina, Epoxidation of lower olefins with hydrogen peroxide and titanium silicalite, J. Catal. 140 (1), 71-83 (1993).

    Article  CAS  Google Scholar 

  12. M. G. Clerici and P. Ingallina in: Green Chemistry, designing Chemistry for the Environment, edited by P. T. Anastas, T. C. Williamson (American Chemical Society, Washington DC, 1996), pp. 59-68.

    Chapter  Google Scholar 

  13. X. Zuwei, Z. Ning, S. Yu, L. Kunlan, Reaction-controlled phase-transfer catalysis for propylene epoxidation to propylene oxide, Science 292, 1139-1141 (2001).

    Article  CAS  Google Scholar 

  14. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism, Nature 359, 710-712 (1992).

    Article  CAS  Google Scholar 

  15. P. T. Tanev, M. Chibwe, T. J. Pinnavaia, Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds, Nature 368, 321-323 (1994).

    Article  CAS  Google Scholar 

  16. T. Maschmeyer, F. Rey, G. Sankar, J. M. Thomas, Heterogenous catalysts obtained by grafting metallocene complexes onto mesoporous silica, Nature 378, 159-162 (1995).

    Article  CAS  Google Scholar 

  17. W. A. Herrmann, F. E. Kühn, Organorhenium oxides, Acc. Chem. Res. 30, 169-180 (1997).

    Article  CAS  Google Scholar 

  18. C. C. Romao, F. E. Kühn, W. A. Herrmann, Rhenium(VII) oxo and imido complexes: synthesis, structures and applications, Chem. Rev. 97, 3197-3246 (1997).

    Article  CAS  Google Scholar 

  19. S. Owens, J. Arias, M. M. Abu-Omar, Rhenium oxo complexes in catalytic oxidations, Catal. Today 55, 317-363 (2000).

    Article  CAS  Google Scholar 

  20. F. E. Kühn, W. A. Herrmann, Methyltrioxorhenium, Chemtracts 14, 59-83 (2001).

    Google Scholar 

  21. G. Soldaini, Methyltrioxorhenium (MTO), Synlett 1849-1850 (2004).

    Google Scholar 

  22. W. A. Herrmann, R. W. Fischer, D. W. Marz, Multiple bonding between main group elements and transition metals. 100. Part 2. Methyltrioxorhenium as catalyst for olefin oxidation, Angew. Chem. Int. Ed. Engl. 30, 1638-1641 (1991).

    Article  Google Scholar 

  23. I. R. Beattie, P. J. Jones, Methyltrioxorhenium. An air-stable compound containing a carbon-rhenium bond. Inorg. Chem. 18, 2318-2319 (1979).

    Article  CAS  Google Scholar 

  24. W. M. Adam, C. M. Mitchell, Methyltrioxorhenium(VII)-catalyzed epoxidation of alkenes with the urea/hydrogen peroxide adduct, Angew. Chem. Int. Ed. Engl. 35, 533-535 (1996).

    Article  CAS  Google Scholar 

  25. J. Rudolph, K. L. Reddy, J. P. Chiang, K. B. Sharpless, Highly efficient epoxidation of olefins using aqueous H2O2 and catalytic methyltrioxorhenium/pyridine: pyridinemediated ligand acceleration, J. Am. Chem. Soc. 119, 6189-6190 (1997).

    Article  CAS  Google Scholar 

  26. C. Copéret, H. Adolfsson, K. B. Sharpless, A simple and efficient method for epoxidation of terminal alkenes, Chem. Commun. 1565-1566 (1997).

    Google Scholar 

  27. H. Adolfsson, C. Copéret, J. P. Chiang, A. K. Yudin, Efficient epoxidation of alkenes with aqueous hydrogen peroxide catalyzed by methyltrioxorhenium and 3-cyanopyridine, J. Org. Chem. 65, 8651-8658 (2000).

    Article  CAS  Google Scholar 

  28. W. A. Herrmann, R. M. Kratzer, H. Ding, W. R. Thiel, H. Gras, Methyltrioxorhenium/ pyrazole-a highly efficient catalyst in the epoxidation of olefins, J. Organometal. Chem. 555, 293-295 (1998).

    Article  CAS  Google Scholar 

  29. G. S. Owens, M. M. Abu-Omar, Methyltrioxorhenium-catalyzed epoxidations in ionic liquids, Chem. Commun. 1165-1166 (2000).

    Google Scholar 

  30. G. S. Owens, A. Durazo, M. M. Abu-Omar, Kinetics of MTO-catalyzed olefin epoxidation in ambient temperature ionic liquids: UV/Vis and 2H NMR study, Chem. Eur. J. 8, 3053-3059 (2002).

    Article  CAS  Google Scholar 

  31. R. Saladino, V. Neri, A. R. Pelliccia, R. Caminiti, C. Sadun, Preparation and structural characterization of polymer-supported methylrhenium trioxide systems as efficient and selective catalysts for the epoxidation of olefins, J. Org. Chem. 67, 1323-1332 (2002).

    Article  CAS  Google Scholar 

  32. O. A. Bouh, J. H. Espenson, Epoxidation reactions with urea-hydrogen peroxide catalyzed by methyltrioxorhenium(VII) on niobia. J. Mol. Cat. A: Chem. 200, 43-47 (2003).

    Article  CAS  Google Scholar 

  33. G. Soldaini, F. Cardona, A. Goti, Methyltrioxorhenium ctalyzed domino epoxidationnucleophilic ring opening of glycals, Tetrahedron Lett. 44, 5589-5592 (2003).

    Article  CAS  Google Scholar 

  34. A. Goti, F. Cardona, G. Soldaini, C. Crestini, C. Fiani, R. Saladino, Methyltrioxorheniumcatalyzed epoxidation-methanolysis of glycals under homogeneous and heterogeneous conditions, Adv. Synth. Catal. 348, 476-486 (2006).

    Article  CAS  Google Scholar 

  35. G. Soldaini, F. Cardona, A. Goti, Catalytic oxidation-phosphorylation of glycals: rate acceleration and enhancement of selectivity with added nitrogen ligands in common organic solvents, Org. Lett. 7, 725-728 (2005).

    Article  CAS  Google Scholar 

  36. a) D. E. De Vos, T. Bein, Highly selective epoxidation of alkenes and styrenes with H2O2 and manganese complexes of the cyclic triamine 1,4,7-trimethyl-1,4,7-triazacyclononane, Chem. Commun. 917-918 (1996). b) D. E. De Vos, B. F. Sels, M. Reynaers, Y. V. Subba Rao, P. A. Jacobs, Epoxidation of terminal or electron-deficient olefins with H2O2, catalyzed by Mn-trimethyltriazacyclononane complexes in the presence of an oxalate buffer, Tetrahedron Lett. 39, 3221-3224 (1998).

    Google Scholar 

  37. M. C. White, A. G. Doyle, E. N. Jacobsen, A synthetically useful, self assembling MMO mimic system for catalytic alkene epoxidation with aqueous H2O2, J. Am. Chem. Soc. 123, 7194-7195 (2001).

    Article  CAS  Google Scholar 

  38. T. Hori, K. B. Sharpless, Synthetic applications of arylselenenic and arylseleninic acids. Conversion of olefins to allylic alcohols and epoxides, J. Org. Chem. 43, 1689-1697 (1978).

    Article  CAS  Google Scholar 

  39. G. J. Ten Brink, B. C. M. Fernandes, M. C. A. van Vliet, I. C. W. E. Arends, R. A. Sheldon, Selenium catalyzed oxidations with aqueous hydrogen peroxide. Part I. Epoxidation reactions in homogeneous solution, J. Chem. Soc. Perkin Trans 1 224-228 (2001).

    Article  Google Scholar 

  40. B. H. Brodsky, J. Du Bois, Oxaziridine-mediated catalytic hydroxylation of unactivated 3°C-H- bonds using hydrogen peroxide, J. Am. Chem. Soc. 127, 15391-15393 (2005).

    Article  CAS  Google Scholar 

  41. a) K. Bergstad, S. Y. Jonsson, J. -E. Bäckvall, A new coupled catalytic system for dihydroxylation of olefins by H2O2, J. Am. Chem. Soc. 121, 10424-10425 (1999). b) S. Y. Jonsson, K. Färnegårdh, J.-E. Bäckvall, Osmium-catalyzed asymmetric dihy-droxylation of olefins by H2O2 using a biomimetic flavin-based coupled catalytic system, J. Am. Chem. Soc. 123, 1365-1371 (2001). c) S. Y. Jonsson, H. Adolfsson, J. -E. Bäckvall, MTO and OsO4: an efficient catalytic couple for mild H2O2 based asymmetric dihydroxylation of olefins, Chem. Eur. J. 9, 2783-2788 (2003).

    Google Scholar 

  42. I. W. C. E. Arends, Metal-catalyzed asymmetric epoxidations of terminal olefins using hydrogen peroxide as the oxidant, Angew. Chem. Int. Ed. 45, 6250-6252 (2006).

    Article  CAS  Google Scholar 

  43. E. Da Palma Carreiro, G. Young-En, A. J. Burke, Approaches towards catalytic asymmetric epoxidations with methyltrioxorhenium(VII) (MTO): Synthesis and evaluation of chiral non-racemic 2-substituted pyridines, J. Mol. Cat. A.. Chem. 235, 285-292 (2005).

    Article  CAS  Google Scholar 

  44. R. I. Kureshy, S. Singh, N. H. Khan, S. H. R. Abdi, I. Ahmed, A. Bhatt, R. V. Jasra, Environmentally friendly protocol for enantioselective epoxidation of non-functionalized alkenes catalyzed by recyclable homochiral dimeric Mn(III) salen complexes with hydrogen peroxide and UHP adduct as oxidants, Catal. Lett. 107, 127-130 (2006).

    Article  CAS  Google Scholar 

  45. K. Matsumoto, Y. Sawada, B. Saito, K. Sakai, T. Katsuki, Construction of pseudoheterochiral and homochiral di-μ-oxotitanium (Schiff base) dimers and enantioselective epoxidation using aqueous hydrogen peroxide, Angew. Chem. Int. Ed. 44, 4935-4939 (2005).

    Article  CAS  Google Scholar 

  46. Y. Sawada, K. Matsumoto, S. Kondo, H. Watanabe, T. Ozaka, K. Suzuki, B. Saito, T. Katsuki, Titanium-salan-catalyzed asymmetric epoxidation with aqueous hydrogen per-oxide as the oxidant, Angew. Chem. Int. Ed. 45, 3478-3480 (2006).

    Article  CAS  Google Scholar 

  47. M. K. Tse, C. Döbler, S. Bhor, M. Klawonn, W. Mägerlein, H. Hugl, M. Beller, Development of a ruthenium-catalyzed asymmetric epoxidation procedure with hydrogen peroxide as the oxidant, Angew. Chem. Int. Ed. 43, 5255-5260 (2004).

    Article  CAS  Google Scholar 

  48. M. K. Tse, S. Bhor, M. Klawonn, G. Anilkumar, H. Jiao, A. Spannenberg, C. Döbler, W. Mägerlein, H. Hugl, M. Beller, Ruthenium-catalzyed asymmetric epoxidation of olefins using H2O2, part II: catalytic activities and mechanism, Chem. Eur. J. 12, 1875-1888 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this paper

Cite this paper

Goti, A., Cardona, F. (2008). Hydrogen Peroxide in Green Oxidation Reactions: Recent Catalytic Processes. In: Tundo, P., Esposito, V. (eds) Green Chemical Reactions. NATO Science for Peace and Security Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8457-7_9

Download citation

Publish with us

Policies and ethics