Skip to main content

‘Greener’ Organic Syntheses Under Non-Traditional Conditions Using Microwave and Ultrasound Irradiation and Mechanochemical Mixing

  • Conference paper
Green Chemical Reactions

Part of the book series: NATO Science for Peace and Security Series ((NAPSC))

Abstract

Solvent-free mechanochemical methods that involve the use of hypervalent iodine reagents at room temperature are described for the synthesis of heterocyclic entities and conversion of ketones into β-keto sulfones in high yields. A solvent-free approach that involves microwave (MW) exposure of neat reactants (undiluted) catalyzed by the surfaces of lessexpensive and recyclable mineral supports such as alumina, silica, clay, or ‘doped’ surfaces is presented; it is applicable to a wide range of cleavage, condensation, cyclization, rearrangement, oxidation, and reduction reactions, including rapid one-pot assembly of heterocyclic compounds from in situ generated reactive intermediates. The strategy is adaptable to multicomponent reactions, e.g. Ugi and Biginelli reactions, for rapid assembly of a library of compounds. Synthesis of a wide variety of significant precursors and intermediates, namely enones, imines, enamines, nitroalkenes, and oxidized sulfur species, is possible and their value in concise MW synthesis of 2-aroylbenzofurans and thiazole derivatives is illustrated. Ultrasoundand MW-assisted solventless preparation of ionic liquids and their application in alkylation and metal-catalyzed multi-component reactions is described. Efficient reaction of epoxides with carbon dioxide (CO2) provides ready access to cyclic carbonates using only a catalytic amount of recyclable indium-based ionic liquid. MW heating in aqueous reaction media enables expeditious N-alkylation reactions of amines and hydrazines to afford a series of heterocyclic ring systems, such as N-azacycloalkanes, 4,5-dihydropyrazoles, and pyrazolidines. A general and expeditious MW-enhanced nucleophilic substitution approach uses easily accessible starting materials, such as halides or tosylates, in reaction with alkali azides, thiocyanates, or sulfinates in the absence of any phase transfer catalyst to produce azides, thiocyanates, and sulfones, respectively, wherein a variety of reactive functional groups are tolerated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Varma RS, in “Microwaves in Organic Synthesis” (A. Loupy, Ed.), Chapter 8, 2006, pp. 362-415, Wiley-VCH, Weinheim.

    Google Scholar 

  2. (a) Varma RS, Pure Appl Chem, 73, 2001, 193. (b) Varma RS, Green Chem, 1, 1999, 43.

    Google Scholar 

  3. Pillai U, Sahle-Demessie E & Varma RS, J Mat Chem, 12, 2002, 3199.

    Article  CAS  Google Scholar 

  4. Varma RS, Tetrahedron, 58, 2002, 1235.

    Article  CAS  Google Scholar 

  5. (a) Varma RS, in “Ionic Liquids as Green Solvents. Progress and Prospects,” Rogers R & Seddon KR (Eds.), ACS Symposium Series 856, American Chemical Society, Washington, DC, Chap. 7, 2003, pp 82-92. (b) Namboodiri VV & Varma RS, Org Lett, 4, 2002, 3161.

    Google Scholar 

  6. Wei W, Keh CCK, Li C-J & Varma RS, Clean Tech & Environ. Policy, 7, 2005, 62.

    Article  CAS  Google Scholar 

  7. Varma RS & Naicker KP, Org Lett, 1, 1999, 189.

    Article  CAS  Google Scholar 

  8. (a) Kumar D, Chandra Sekhar, KVG Dhillon H, Rao VS & Varma RS, Green Chem, 6, 2004, 156. (b) Kumar D, Sundaree S Rao VS & Varma RS, Tetrahedron Lett, 47, 2006, 4197. (c) Kumar D, Sundaree S Patel G, Rao VS & Varma RS Tetrahedron Lett, 47, 2006, 8239.

    Google Scholar 

  9. Varma RS, Microwave Technology-Chemical Synthesis Applications : Kirk-Othmer Encyclopedia of Chemical Technology, 5 th Ed Vol 16, pp. 538-594 (2006).

    Google Scholar 

  10. Varma RS, “Advances in Green Chemistry: Chemical Syntheses Using Microwave Irradiation” AstraZeneca Research Foundation India, Bangalore, India (2002).

    Google Scholar 

  11. (a) Kappe CO, Kumar D & RS Varma RS, Synthesis, 1999 , 1799. (b) Kumar D & Varma RS, Tetrahedron Lett, 40, 1999, 7665. (c) Varma RS, J. Heterocyclic Chem, 35, 1999, 1565.

    Google Scholar 

  12. Varma RS, Kumar D & Liesen PJ, J Chem Soc Perkin Trans, 1, 1998, 4093.

    Article  Google Scholar 

  13. Ješelnik M, Varma RS, Polanc S & Kočevar M, Chem Commun, 2001,1716; Green Chem, 4, 2002, 35.

    Google Scholar 

  14. (a) Varma RS & Namboodiri VV, Chem Commun, 2001, 643. (b) Varma RS & Namboodiri VV, Pure Appl Chem, 73, 2001,1309.

    Google Scholar 

  15. (a) Namboodiri VV & Varma RS, Tetrahedron Lett, 43, 2002, 5381. (b) Kim Y-J & Varma RS, Tetrahedron Lett, 46, 2005, 1467. (c) Kim Y-J & Varma RS, Tetrahedron Lett, 46, 2005, 7447. (d) Kim Y -J & Varma RS, J Org Chem, 70, 2005, 7882.

    Google Scholar 

  16. Yoo K Namboodiri VV, Smirniotis PG & Varma RS, J Catal, 222, 2004, 511.

    Article  CAS  Google Scholar 

  17. Yang X-F Wang M, Varma RS & Li C-J, J Mol Cat A Chemical, 214, 2004, 147.

    Article  CAS  Google Scholar 

  18. Li Z, Wei C, Chen L, Varma RS & Li C-J, Tetrahedron Lett, 45, 2004, 2443.

    Article  CAS  Google Scholar 

  19. Varma RS, Saini RK & Dahiya R, Tetrahedron Lett, 38, 1997, 7823.

    Article  CAS  Google Scholar 

  20. Varma RS, Saini RK & Dahiya R, Tetrahedron Lett, 39, 1998, 1481.

    Article  CAS  Google Scholar 

  21. Varma RS & Dahiya R, Tetrahedron Lett, 38, 1997, 2043.

    Article  CAS  Google Scholar 

  22. (a) Laszlo P, Acc Chem Res,19, 1986,121. (b) Cornelius A & Laszlo P, Synlett, 1994, 155.

    Google Scholar 

  23. Varma RS, Dahiya R & Saini RK, Tetrahedron Lett, 38, 1997, 7029.

    Article  CAS  Google Scholar 

  24. Varma RS, Saini RK & Dahiya R, J Chem Res (S), 1998, 120.

    Google Scholar 

  25. Varma RS, Saini RK & Meshram HM, Tetrahedron Lett, 38, 1997, 6525.

    Article  CAS  Google Scholar 

  26. Varma RS & Saini RK, Tetrahedron Lett, 38, 1997, 4337.

    Article  CAS  Google Scholar 

  27. Erb WT, Jones JR & Lu SY, J. Chem Res (S), 1999, 728.

    Google Scholar 

  28. Elander N, Jones JR, Lu SY & Stone-Elander S, Chem Soc Rev, 29, 2000, 239.

    Article  CAS  Google Scholar 

  29. Fodor-Csorba K, Galli G, Holly S & Gacs-Baitz E, Tetrahedron Lett, 43, 2002, 4337.

    Google Scholar 

  30. Varma RS & Dahiya R, Tetrahedron, 54, 1998, 6293.

    Article  CAS  Google Scholar 

  31. (a) Li C-J, Chem Rev, 105, 2005, 3095. (b) Narayan S, Muldoon J, Finn MG, Fokin VV, Kolb, HC & Sharpless KB, Angew Chem, Int Ed, 44, 2005, 3275.

    Google Scholar 

  32. (a) Kappe CO, Angew Chem Int Ed, 43, 2004, 6250. (b) Bose AK, Manhas MS, Ganguly SN, Sharma AH & Banik BK, Synthesis, 2002, 1578. (c) Leadbeater NE Chem Commun, 2005, 2881. (d) An J, Bagnell L, Cablewski T, Strauss CR & Trainor RW, J Org Chem, 62, 1997, 2505.

    Google Scholar 

  33. Ju Y &Varma RS, Green Chem, 6, 2004, 219.

    Article  CAS  Google Scholar 

  34. (a) Ju Y &Varma RS, Org Lett, 7, 2005, 2409. (b) Ju Y &Varma RS, J Org Chem, 71, 2006,135. (c) Ju Y &Varma RS, Tetrahedron Lett, 46, 2005, 6011.

    Google Scholar 

  35. (a) Varma RS & Naicker KP Tetrahedron Lett, 39, 1998, 2915. (b) Varma RS, Naicker KP & Aschberger P, Synth Commun, 29, 1999, 2823. (c) Varma RS Naicker KP & Kumar D, J Mol Cat A: Chemical, 149, 1999,153.

    Google Scholar 

  36. (a) Perreux L & Loupy A, Tetrahedron, 57, 2001, 9199(b) Loupy A & Varma RS, Chimica Oggi (Chemistry Today), 24, 2006, 36.

    Google Scholar 

  37. Ju Y &Varma RS, J Org Chem, 71, 2006, 6697.

    Article  CAS  Google Scholar 

  38. Kumar D, Reddy VB, Mishra BG, Rana RK, Nadagouda MN & Varma RS, Tetrahedron, 63, 2007, 3093.

    Article  CAS  Google Scholar 

  39. Strauss CR & Varma RS, Top Curr Chem, 266, 2006, pp 199-231, Springer-Verlag Berlin.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this paper

Cite this paper

Varma, R.S. (2008). ‘Greener’ Organic Syntheses Under Non-Traditional Conditions Using Microwave and Ultrasound Irradiation and Mechanochemical Mixing. In: Tundo, P., Esposito, V. (eds) Green Chemical Reactions. NATO Science for Peace and Security Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8457-7_7

Download citation

Publish with us

Policies and ethics