Skip to main content

Dimethyl Carbonate: Green Solvent and Ambident Reagent

  • Conference paper
Green Chemical Reactions

Part of the book series: NATO Science for Peace and Security Series ((NAPSC))

Abstract

DMC is a versatile compound which represents an attractive ecofriendly alternative to both methyl halides (or dimethyl sulfate) and phosgene for methylation and carbonylation processes, respectively. DMC, produced nowadays by a clean process, possesses properties of no toxicity and biodegradability which makes it a true green reagent to be used in syntheses that prevent pollution at the source. The reactivity of DMC is tunable: at T ≤ 90°C, methoxycarbonylations take place, while at higher reaction temperatures, methylation reactions are observed with a variety of nucleophiles. Besides, DMC-mediated methylations are catalytic reactions which use safe solids (alkaline carbonates) avoiding the formation of undesirable inorganic salts as by-products. The high selectivity in methylation reactions is due to the ambident electrophilic character of DMC which reacts on its hard centre (the carbonyl group) with harder nucleophiles and on its soft one (the methyl group) with softer nucleophiles, according to the Hard-Soft Acid and Base (HSAB) theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (a) P. Tundo, P. Anastas, D. StC. Black, J. Breen, T. Collins, S. Memoli, J. Miyamoto, M. Poliakoff, W. Tumas. Pure Appl. Chem. 72, 1207 (2000); (b) P. Tundo, A. Perosa, F. Zecchini in Methods and Reagents for Green Chemistry: An Introduction Wiley (2007).

    Google Scholar 

  2. R. A. Sheldon. Pure Appl. Chem. 72, 1233 (2000).

    Article  CAS  Google Scholar 

  3. B. M. Trost. Science. 254, 1471 (1991).

    Article  CAS  Google Scholar 

  4. P. T. Anastas and T. Williamson. In Green Chemistry: Designing Chemistry for the Environment, ACS Symposium Series 626, P. T. Anastas and T. Williamson (Eds.), pp. 1-17, American Chemical Society, Washington, DC (1996).

    Chapter  Google Scholar 

  5. (a) U. Romano, F. Rivetti, N. Di Muzio. U.S. Patent 4,318,862,1981, C.A. 80141 (1979); (b) D. Delledonne, F. Rivetti, U. Romano. J. Organomet. Chem. 448, C15 (1995); (c) F. Rivetti, U. Romano, D. Delledonne. “Dimethylcarbonate and its production technology”, in Green Chemistry: Designing Chemistry for the Environment, ACS Symposium Series 626, P. T. Anastas and T. C. Williamson (Eds.), pp. 70-80, American Chemical Society, Washington, DC (1996).

    Google Scholar 

  6. Nisihra, K., Mizutare, K., Tanaka, S. Process for Preparing Diester of Carbonic Acid. EP Patent Appl. 425 197, (UBE Industries, Japan).

    Google Scholar 

  7. “The Merck Index,” 11th Ed., S. Budavari, Ed. (1989).

    Google Scholar 

  8. (a) P. Anastas, J. C. Warner, Green Chemistry: Theory and Practice; Oxford University Press: New York, p. 30 (1998).

    Google Scholar 

  9. (a) F. Rivetti, In Green Chemistry: Challenging Perspectives, P. Tundo, P. Anastas, Eds.; Oxford University Press: Oxford, p 201 (2000). (b) D. Delledonne, F. Rivetti, U. J. Romano, Organomet. Chem. 448, C15-C19 (1995). (c) U. Romano, F. Rivetti, N. Di Muzio, U.S. Patent 4,318,862 (1979). (d) P. Tundo, Continuous Flow Methods in Organic Synthesis, E. Horwood: Chichester, UK, p. 190 (1991).

    Google Scholar 

  10. Mizia, F.; Rivetti, F.; Romano, U. EP 0570071, 1993.

    Google Scholar 

  11. (a) P. Tundo, M. Selva, A. Bomben, Org. Synth. 76, 169 (1999); (b) P. Tundo, M. Selva, Acc. Chem. Res. 35, 706 (2002).

    Google Scholar 

  12. (a) P. Tundo, J. Org. Chem. 44, 2048 (1979); (b) P. Tundo, M. Selva, CHEMTECH 25, 31 (1995).

    Google Scholar 

  13. A. Bomben, M. Selva, P. Tundo, L. Valli, Ind. Eng. Chem. Res. 38, 2075 (1999).

    Article  CAS  Google Scholar 

  14. P. Tundo, M. Selva, A. Perosa, S. Memoli, J. Org. Chem. 67, 1071 (2002).

    Article  CAS  Google Scholar 

  15. R. G. Pearson, J. Am. Chem. Soc. 85, 3533 (1963).

    Article  CAS  Google Scholar 

  16. R. G. Pearson, J. Songstad, J. Am. Chem. Soc. 89, 1827 (1967).

    Article  CAS  Google Scholar 

  17. J. L. Gazquez, F. J. Mèndez, J. Phys. Chem. 98, 4049 (1994).

    Article  Google Scholar 

  18. G. Klopman in Chemical Reactivity and Reaction Paths; Ed.; Wiley: New York, (1974).

    Google Scholar 

  19. G. Klopman, J. Am. Chem. Soc. 90, 223 (1968).

    Article  CAS  Google Scholar 

  20. H. Tse-Lok, Chem. Rev. 75, 1, (1975).

    Article  Google Scholar 

  21. (a) T. L. Gresham, J. E. Jansen, F. W. Shaver, J. T. Gregory, W. L. Beears, J. Am. Chem. Soc., 70, 1004 (1948); (b) T. L. Gresham, J. E. Jansen, F. W. Shaver, M. R. Frederick, F. T. Fiedorek, R. A. Bankert, J. T. Gregory, W. L. Beears, J. Am. Chem. Soc., 74, 1323 (1952); (c) T. L. Gresham, J. E. Jansen, F. W. Shaver, J. T. Gregory, J. Am. Chem. Soc., 70, 999 (1948); (d) T. L. Gresham, J. E. Jansen, F. W. Shaver, R. A. Bankert, J. Am. Chem. Soc., 71, 661 (1949).

    Google Scholar 

  22. R. S. Davidson, W. H. H. Gunther, S. M. Waddington-Feather, B. Lythgoe, J. Chem. Soc. 4907 (1964).

    Google Scholar 

  23. D. E. L. Carrington, K. Clarke, R. M. Scrowston, J. Chem. Soc. C, 3262 (1971).

    Google Scholar 

  24. A. C. Pierce, M. M. Joulliè, J. Org. Chem. 27, 3968 (1962).

    Article  CAS  Google Scholar 

  25. (a) F. G. Bordwell, Organic Chemistry; Macmillan: New York, p. 218 (1963); (b) A. J. Parke, Adv. Phys. Org. Chem., 5, 173 (1967).

    Google Scholar 

  26. R. F. Hudson, G. Klopman, J. Chem. Soc., 5 (1964).

    Google Scholar 

  27. (a) M. Selva, C. A. Marques, P. Tundo, J. Chem. Soc., Perkin Trans. 1, 1323 (1994); (b) P. Loosen, P. Tundo, M. Selva, U.S. Patent 5, 278,533 (1994); (c) A. Bomben, C. A. Marques, M. Selva, P. Tundo, Tetrahedron, 51, 11573 (1995); (d) A. Bomben, M. Selva, P. Tundo, J. Chem. Res., Synop., 448 (1997); (e) P. Tundo, F. Trotta, G. Moraglio, Italian Pat. 20159A/90C, (1990).

    Google Scholar 

  28. J. F. Bunnett, G. T. Davis, J. Am. Chem. Soc., 82, 665 (1960).

    Article  CAS  Google Scholar 

  29. W. P. Jencks, J. Carriuolo, J. Am. Chem. Soc., 82, 675 (1960).

    Article  CAS  Google Scholar 

  30. (a) P. Anastas, D. Black, J. Breen, T. Collins, S. Memoli, J. Miyamoto, M. Polyakoff, W. Tumas, Pure Appl. Chem., 72 (7), 1207 (2000); (b) P. Tundo, L. Rossi, A. Loris, J. Org. Chem., 70(6), 2219 (2005); (c) P. Tundo, S. Bressanello, A. Loris, G. Sathicq, Pure Appl. Chem.,77 (10), 1719 (2005); (d) F. Trotta, P. Tundo, G. Moraglio, J. Org. Chem., 52 (7) 1300 (1987).

    Google Scholar 

  31. H. Buysch, H. Krimm, W. Richter, EP 483171 B1 (1981), to Bayer.

    Google Scholar 

  32. A. E.Gurgiolo, US 4,268,683, to DOW.

    Google Scholar 

  33. A. E.Gurgiolo, US 4,268,684, to DOW.

    Google Scholar 

  34. A. Bosetti, P. Cesti, F. Calderazzo US 5,698,731 (1997).

    Google Scholar 

  35. A. Bosetti, E. Cauchi, V. Carletti, P. Cesti, EP0881213 (1998).

    Google Scholar 

  36. P. Cesti, A. Bosetti,F. Mizia, M. Notari, M. Ricci, F. Rivetti, U. Romano, US 6,992,214 B2 (2006), to DOW.

    Google Scholar 

  37. P. Tundo, F. Trotta, G. Moraglio, F. Logorati, Ind. Eng. Chem. Res., 27, 1565 (1988).

    Article  CAS  Google Scholar 

  38. 1-Octanol (9.3 mmol) was reacted in an autoclave with 40 mL of DMC (solvent and reactant) in the presence of 11 mmol of K2CO3, at 200°C.

    Google Scholar 

  39. J. N. Greenshields, U. S. Patent 4,770,871, (1988).

    Google Scholar 

  40. S. Rahmathullah, J. E. Hall, B. C. Bender, D. R. McCurdy, R. R. Tidwell, D. W. Boykin, J. Med. Chem., 42, 3994 (1999).

    Article  CAS  Google Scholar 

  41. (a) J. Bergman, L. Venemalm, J. Org. Chem. 57, 2495-2497 (1992); (b) H. Heaney, S. V. Ley, Organic Syntheses, 54, 58 (1974).

    Google Scholar 

  42. W.-C. Shieh, S. Dell, A. Bach, O. Repic, T. J. Blacklock, J. Org. Chem., 68, 1954 (2003).

    Article  CAS  Google Scholar 

  43. M. Selva, C. A. Marques, P. Tundo, Gazz. Chim. It., 123, 515 (1993).

    CAS  Google Scholar 

  44. A. E. Rosamilia, F. Arico, P. Tundo, J. Org. Chem., In Press (2008).

    Google Scholar 

  45. (a) W. N. Olmstead, Z. Margolin, F. G. Bordwell, J. Org. Chem., 45, 3295 (1980); Y. Zhao, F. G. Bordwell, J.-P. Cheng, D. Wang, J. Am. Chem. Soc., 119, 9125 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this paper

Cite this paper

Tundo, P., Aricò, F., Rosamilia, A.E., Grego, S., Rossi, L. (2008). Dimethyl Carbonate: Green Solvent and Ambident Reagent. In: Tundo, P., Esposito, V. (eds) Green Chemical Reactions. NATO Science for Peace and Security Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8457-7_10

Download citation

Publish with us

Policies and ethics