Skip to main content

Part of the book series: Fish & Fisheries Series ((FIFI,volume 29))

Abstract

The meat and, above all, the caviar from sturgeons have been gastronomic emblems of delicacy from time immemorial. When sturgeons were abundant, caviar was marketed primarily from three species (Huso huso, Acipenser gueldenstaedtii and A. stellatus) mostly from the Caspian Sea. However, these are not the only species of sturgeons used traditionally to produce quality caviar, nor is the Caspian its only geographic origin. For example, caviar from sturgeons belonging to the species A. sturio or A. naccarii captured in the Guadalquivir River (southern Spain) gained renown in the 1960s, winning prizes at world fairs. Now, when sturgeons are almost disappearing all over the world, the caviar trade has become far more complex. In fact, practically all sturgeon species can produce quality caviar, not only in the wild (in steady decline) but also in fish farms. This scenario makes it necessary to monitor the sale of caviar at a worldwide level, and for this the application of molecular techniques based on DNA, together with others, can be of great use. In this chapter, we present two types of DNA markers for this purpose: some, especially nuclear-DNA markers, indicate qualitative differences between the different species (presence/absence of these markers); and others, particularly mitochondrial-DNA, indicate differences in certain bases of nucleotide sequences. In addition, sturgeons produce interspecific hybrids. Consequently, nuclear markers along with mitochondrial ones are needed for accurately identifying the species responsible for a given caviar.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnason U, Gretarsdottir S and Widegren B (1992) Mysticete (balleen whale) relationships based upon the sequence of the common cetacean DNA satellite. Mol. Biol. Evol. 9: 1018–1028.

    PubMed  CAS  Google Scholar 

  • Artyukhin EN (1995) On biogeography and relationships within the genus Acipenser. Sturgeon. Quercus 3: 6–8.

    Google Scholar 

  • Bemis WE and Kynard B (1997) Sturgeon rivers: an introduction to Acipenseriform biogeography and life history. Environ. Biol. Fish. 48: 167–183.

    Article  Google Scholar 

  • Billard R and Lecointre G (2000) Biology and conservation of sturgeon and paddlefish. Rev. Fish Biol. Fisheries 10: 355–392.

    Article  Google Scholar 

  • Birstein VJ (1993) Sturgeon and paddlefishes: threatened fishes in need of conservation. Conserv. Biol. 7: 773–787.

    Article  Google Scholar 

  • Birstein VJ and Bemis WE (1997) How many species ate there within the genus Acipenser? Environ. Boil. Fish. 48: 157–163

    Article  Google Scholar 

  • Birstein VJ and DeSalle R (1998) Molecular phylogeny of Acipenserinae. Mol. Phylogenet. Evol. 9: 141–155.

    Article  PubMed  CAS  Google Scholar 

  • Birstein VJ, Doukakis P, Sorkin B et al. (1998) Population aggregation analysis of three caviar-producing species of sturgeons and implications for the species identification of black caviar. Conserv. Biol. 12: 766–775.

    Article  Google Scholar 

  • Birstein VJ, Doukakis P and DeSalle R (2002) Molecular phylogeny of Acipenseridae: nonmonophyly of Scaphirhynchinae. Copeia 2: 287–301.

    Article  Google Scholar 

  • Birstein VJ, Ruban G, Ludwig A, Doukakis P and DeSalle R (2005) The enigmatic Caspian Sea Russian sturgeon: How many cryptic forms does it contain? Syst. Biodivers. 3: 203–218.

    Article  Google Scholar 

  • Charlesworth B, Siniegowski P and Stephan W (1994) The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371: 215–220.

    Article  PubMed  CAS  Google Scholar 

  • Chen IC, Chapman FA, Wei CI et al. (1996) Preliminary studies on SDS-PAGE and isoelectric focusing identification of sturgeon sources of caviar. J. Food Sci. 61: 533–359.

    Article  CAS  Google Scholar 

  • Comincini S, Lanfredi M, Rossi R et al. (1998) Use of RAPD markers to determine the genetic relationships among sturgeons (Acipenseridae, Pisces). Fish. Sci. 64: 35–38.

    CAS  Google Scholar 

  • Congiu L, Dupanloup I, Patarnello T et al. (2001) Identification of interspecific hybrids by amplified fragment length polymorphism: the case of sturgeon. Mol. Ecol. 10: 2355–2359.

    Article  PubMed  CAS  Google Scholar 

  • Debus L, Winkler M and Billard R (2002) Structure of micropyle surface on oocytes and caviar grains in sturgeons. Int. Rev. Hydrobiol. 87: 585–603.

    Article  Google Scholar 

  • De la Herrán R, Fontana F, Lanfredi M et al. (2001) Slow rates of evolution and sequence homogenization in an ancient satellite DNA family of sturgeons. Mol. Biol. Evol. 18: 432–436.

    Google Scholar 

  • De la Herrán R, Robles F, Martínez-Espín E et al. (2004) Genetic identification of western Mediterranean sturgeons and its implication for conservation. Conserv. Genet. 5: 545–551.

    Article  Google Scholar 

  • DeSalle R and Birstein VJ (1996) PCR identification of black caviar. Nature 381: 197–198.

    Article  CAS  Google Scholar 

  • Dover G (1986) Molecular drive in multigene families: how biological novelties arise, spread and are assimilated. Trends Genet. 2: 159–165.

    Article  CAS  Google Scholar 

  • Fanning TG, Seuanez HN and Forman L (1993) Satellite DNA sequences in the New World primate Cebus capella (Platyrrhini, Primates). Chromosoma 102: 306–311.

    Article  PubMed  CAS  Google Scholar 

  • Gardiner BG (1984) Sturgeons as living fossils. In: Eldredge N and Stanley SM (eds.), Living Fossils. Springer-Verlag, New York, pp. 148–152.

    Google Scholar 

  • Garrido-Ramos MA, Soriguer C, De la Herrán R et al. (1997) Morphometric and genetic analysis as proof of the existence of two sturgeon species in the Guadalquivir river. Mar. Biol. 129: 33–39.

    Article  Google Scholar 

  • Garrido-Ramos MA, De la Herrán R, Jamilena M et al. (1999) Evolution of centromeric satellite DNA and its use in phylogenetic studies of Sparidae family (pisces, Perciformes). Mol. Phylogenet. Evol. 12: 200–204.

    Article  PubMed  CAS  Google Scholar 

  • Grétarsdóttir G and Arnason U (1992) Evolution of the common cetacean highly repetitive DNA component and the systematic position of Orcaella brevirostris. J. Mol. Evol. 34: 201–208.

    Article  PubMed  Google Scholar 

  • IUCN 2004. 2004 IUCN Red List of Threatened Species. Downloaded on 07 March 2005. http://www.iucnredlist.org

  • Jenneckens I, Meyer JN, Hörstgen-Schwark G et al. (2001) A fixed allele at microsatellite LS-39 is characteristic fort he black caviar producer Acipenser stellatus. J. Appl. Ichthyol. 17: 39–42.

    Article  CAS  Google Scholar 

  • Keyvanfar A, Rochu D and Fine JM (1988) Comparative study of sturgeon oocyte soluble proteins by isoelectric focusing. Comp. Biochem. Physiol. B 90: 393–396.

    Article  PubMed  CAS  Google Scholar 

  • Krieger J and Fuerst PA (2002) Evidence for a slowed rate of molecular evolution in the Order Acipenseriformes. Mol. Biol. Evol. 19: 891–897.

    PubMed  CAS  Google Scholar 

  • Krieger J, Fuerts PA and Cavender T (2000) Phylogenetic relationship of north American sturgeons (Order Acipenseriformes) based on mitochondrial DNA sequences. Mol. Phylogenet. Evol. 16: 64–72.

    Article  PubMed  CAS  Google Scholar 

  • Ludwig A, Belfiore NM, Pitra C et al. (2001) Genome duplication events and functional reduction of ploidy levels in sturgeon (Acipenser, Huso and Scaphirhynchus). Genetics 158: 1203–1215.

    PubMed  CAS  Google Scholar 

  • Ludwig A, Debus L and Jenneckens I (2002) A molecular approach for trading control of black caviar. Int. Rev. Hydrobiol. 87: 661–674.

    Article  CAS  Google Scholar 

  • Ludwig A, Congiu L, Pitra C et al. (2003) Nonconcordant evolutionary history of maternal and paternal lineages in Adriatic sturgeon. Mol. Ecol. 12: 3253–3264.

    Article  PubMed  CAS  Google Scholar 

  • May B, Krueger CC and Kincaid HL (1997) Genetic variation at microsatellite loci in sturgeon: primer sequence homology in Acipenser and Scaphirhynchus. Can. J. Fish. Aquat. Sci. 54: 1542–1547.

    Article  CAS  Google Scholar 

  • McDowald MR (1999) Different kinds of diadromy: different kinds of conservation problems. ICES J. Mar. Sci. 56: 410–413.

    Article  Google Scholar 

  • Pons J and Gillespie RG (2003) Common origin of the satellite DNAs of the Hawaiian spiders of the genus Tetragnatha: evolutionary constraints on the length and nucleotide composition of the repeats. Gene 313: 169–177.

    Article  PubMed  CAS  Google Scholar 

  • Pons J, Petitpierre E and Juan C (2002) Evolutionary dynamics of satellite DNA family PIM357 in species of the genus Pimelia (Tenebrionidae, Coleoptera). Mol. Biol. Evol. 19: 1329–1340.

    PubMed  CAS  Google Scholar 

  • Raymakers C (2002) International trade in sturgeon and paddlefish species—the effect of CITES listing. Int. Rev. Hydrobiol. 87: 525–537.

    Article  Google Scholar 

  • Rehbein H (1985) Caviar: proximate composition, amino acid content and identification of fish species. Zeitschrift Lebensmittel Unters. Forschung 180: 457–462.

    CAS  Google Scholar 

  • Robles F, De la Herrán R, Ludwig A et al. (2004) Evolution of ancient satellite DNAs in sturgeon genomes. Gene 338: 133–142.

    Article  PubMed  CAS  Google Scholar 

  • Rochard E, Williot P, Castelnaud G et al. (1991) Eléments de systématique et de biologie des populations sauvages d’esturgeons. In: Williot P (ed.), Acipenser. Cemagref, Bordeaux, pp. 475–507.

    Google Scholar 

  • Ruiz Rejón M, De la Herrán R, Ruiz Rejón C et al. (2000) Genetic characterization of Acipenser sturio L., 1758 in relation to other sturgeon species using satellite DNA. Bol. Inst. Esp. Oceanogr. 16: 231–236.

    Google Scholar 

  • Tagliavini J, Conterio G, Gandolfi G et al. (1999) Mitochondrial DNA sequences of six sturgeon species and phylogenetic relationships within Acipenseridae. J. Appl. Ichthyol. 15: 17–22.

    Article  CAS  Google Scholar 

  • Tranah G, Campton DE and May B (2004) Genetic evidence for hybridisation of pallid and shovelnose sturgeon. J. Hered. 95: 474–480.

    Article  PubMed  CAS  Google Scholar 

  • Ugarković Đ and Plohl M (2002) Variation in satellite DNA profiles—causes and effects. EMBO J 21: 5955–5959.

    Article  PubMed  Google Scholar 

  • Wijers ER, Zijlstra C and Lenstra JA (1993) Rapid evolution of horse satellite DNA. Genomics 18: 113–117.

    Article  PubMed  CAS  Google Scholar 

  • Wirth M, Kirschbaum F, Gessner J et al. (2002) Fatty acid composition in sturgeon caviar from different species: Comparing wild and farmed origins. Int. Rev. Hydrobiol. 87(5–6): 629–636.

    Article  CAS  Google Scholar 

  • Wolf C, Hübner P and Lüthy J (1999) Differentiation of sturgeon species by PCR-RFLP. Food Res. Int. 32: 699–705.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Rejón, M.R., Robles, F., de la Herrán, R., Garrido-Ramos, M., Rejón, C.R. (2009). Identification of Sturgeon Caviar Using DNA Markers. In: Carmona, R., Domezain, A., García-Gallego, M., Hernando, J.A., Rodríguez, F., Ruiz-Rejón, M. (eds) Biology, Conservation and Sustainable Development of Sturgeons. Fish & Fisheries Series, vol 29. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8437-9_18

Download citation

Publish with us

Policies and ethics