Skip to main content

Carbon/nitrogen/phosphorus allometric relations across species

  • Chapter
The Ecophysiology of Plant-Phosphorus Interactions

Part of the book series: Plant Ecophysiology ((KLEC,volume 7))

This chapter reviews some of the ecological and evolutionary implications of carbon (C), nitrogen (N), and phosphorus (P) stoichiometry and the allometric relationships among these elements reported for terrestrial plant species because the patterns of C mass allocation and N:P-stoichiometry for different plant organ-types are of general interest to understanding a broad range of ecological and evolutionary phenomena (Aerts and Chapin 2000; Bazzaz and Grace 1997; Chapin et al. 1986; Grime 1979; Niklas and Enquist 2001, 2002; Westoby et al. 2002; Wright et al. 2004; Niklas et al. 2005, 2007; Kerkhoff et al. 2006). Much of the functional-trait variation observed among species differing in overall size can be attributed to differences in the amount of C, N or P allocated to the construction of leaves, stems, roots, and reproductive structures as well as to differences in overall body size (Grime 1979; Field and Mooney 1986; Tilman 1988; Bazzaz and Grace 1997; Jackson et al. 1997; Milberg and Lamont 1997; Weiher et al. 1999; Niklas and Enquist 2001, 2002; Enquist and Niklas 2002; Westoby et al. 2002; Wright et al. 2004; Niklas et al. 2005, 2007; Kerkhoff et al. 2006). Likewise, the P and N concentrations in plant tissues critically influence the material and energy cycles of whole ecosystems (Chapin et al. 1997; De Angelis 1980; Kerkhoff et al. 2005; Koerselman and Meuleman 1996; Silver 1994; Sterner and Elser 2002; Vitousek 1982; Vogt et al. 1986; Ågren and Bosatta 1996) and phylogenetic functional trait differences in the ability to acquire and use N or P are temperature-dependent, such that climatic shifts of sufficient magnitude (e.g., along latitudinal or altitudinal gradients) can have major affects on the C economy of terrestrial vegetation (Kerkhoff et al. 2005; Wright et al. 2005; Westoby and Wright 2006).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aerts R (1996) Nutrient resorption from senescing leaves of perennials: are there general patterns? J Ecol 84: 597–608

    Google Scholar 

  • Aerts R, Chapin FS (2000) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv Ecol Res 30: 1–67

    CAS  Google Scholar 

  • Ågren GI (1988) Ideal nutrient productivities and nutrient proportions in plant growth. Plant Cell Environ 11: 613–620

    Google Scholar 

  • Ågren GI (2004) The C:N:P stoichiometry of autotrophs - theory and observations. Ecol Lett 7: 185–191

    Google Scholar 

  • Ågren GI, Bosatta E (1996) Theoretical Ecosystem Ecology: Understanding Nutrient Cycles. Cambridge University Press, Cambridge

    Google Scholar 

  • Anten NPR, Schieving F, Werger MJA (1995) Patterns of light and nitrogen distribution in relation to whole canopy carbon gain in C-3 and C-4 monocotyledonous and dicotyledonous species. Oecologia 101: 504–513

    Google Scholar 

  • Anten NPR, Hikosaka K, Hirose T (2000) Nitrogen utilisation and the photosynthetic system. In: Marshall B, Roberts JA (eds), Leaf Development and Canopy Growth. Sheffield Academic Press, Sheffield, pp 171–203

    Google Scholar 

  • Banse K (1976) Rates of growth, respiration and photosynthesis of unicellular algae as related to cell size - a review. J Phycol 12: 135–140

    Google Scholar 

  • Bazzaz FA, Grace J (1997) Plant Resource Allocation. Academic, San Diego, CA

    Google Scholar 

  • Blaxter KL (ed) (1965) Proceedings of the 3rd Symposium on Energy Metabolism. Troon, Scotland, May 1964. Academic, New York

    Google Scholar 

  • Blum JJ (1977) On the geometry of four-dimensions and the relationship between metabolism and body mass. J Theor Biol 64: 599–601

    PubMed  CAS  Google Scholar 

  • Broadley MR, Bowen HC, Cotterill HL, Hammond JP, Meacham MC, Mead A, White PJ (2004) Phylogenetic variation in the shoot mineral concentration of angiosperms. J Exp Bot 55: 321–336

    PubMed  CAS  Google Scholar 

  • Brown RH (1978) A difference in N use efficiency in C3 and C4 plants and its implications in adaptation and evolution. Crop Sci 18: 93–98

    CAS  Google Scholar 

  • Calder WA III (1984) Size, Function, and Life History. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Calder WA III (1996) Size, Function, and Life History. Dover, New York

    Google Scholar 

  • Campana T, Schwartz LM (1981) Section 9. RNA and associated enzymes. In: Schwartz LM, Azar MM (eds), Advanced Cell Biology. Van Nostrand Reinhold, New York, pp 877–944

    Google Scholar 

  • Cebrian J (1999) Patterns in the fate of production in plant communities. Am Nat 154: 449–468

    PubMed  Google Scholar 

  • Chapin FS, Kedrowski RA (1983) Seasonal changes in nitrogen and phosphorus fractions and autumn retranslocation in evergreen and deciduous taiga trees. Ecology 64: 376–391

    CAS  Google Scholar 

  • Chapin FS, Vitousek PM, Vancleve K (1986) The nature of nutrient limitation in plant-communities. Am Nat 127: 48–58

    Google Scholar 

  • Chapin FS, Walker BH, Hobbs RJ, Hooper DU, Lawton JH, Sala OE, Tilman D (1997) Biotic control over the functioning of ecosystems. Science 277: 500–504

    CAS  Google Scholar 

  • Darveau CA, Suarez RK, Andrews RD, Hochachka PW (2002) Allometric cascade as a unifying principle of body mass effects on metabolism. Nature 417: 166–170

    PubMed  CAS  Google Scholar 

  • De Angelis DL (1980) Energy-flow, nutrient cycling, and ecosystem resilience. Ecology 61: 764–771

    Google Scholar 

  • Dobberfuhl DR (1999) Elemental Stoichiometry in Crustacean Zooplankton: Phylogenetic Patterns, Physiological Mechanisms, and Ecological Consequences. Dissertation, Arizona State University, Tempe, Arizona

    Google Scholar 

  • Dodds, PS, Rothman DH, Weitz JS (2001) Re-examination of the “3/4 - law” of metabolism. J Theor Biol 209: 9–27

    PubMed  CAS  Google Scholar 

  • Economos AE (1982) On the origin of biological similarity. J Theor Biol 94: 25–60

    Google Scholar 

  • Economos AE (1983) Elastic and/or geometric similarity in mammalian design. J Theor Biol 103: 167–172

    PubMed  CAS  Google Scholar 

  • Elser JJ, Fagan WF, Denno RF, Dobberfuhl DR, Folarin A, Huberty A, Interlandi S, Kilham SS, McCauley S, Schulz KL, Siemann EH, Sterner RW (2000a) Nutritional constraints in terrestrial and freshwater food webs. Nature 408: 578–580

    PubMed  CAS  Google Scholar 

  • Elser JJ, Sterner RW, Gorokhova E, Fagan WF, Markow TA, Cotner JB, Harrison JF Hobbie SE, Odell GM, Weider LJ (2000b) Biological stoichiometry from genes to ecosystems. Ecol Lett 3: 540–550

    Google Scholar 

  • Elser JJ, Acharya K, Kyle M, Cotner J, Makino W, Markow T, Watts T, Hobbie W, Fagan W, Schade J, Sterner RW (2003) Growth rate-stoichiometry couplings in diverse biota. Ecol Lett 6: 936–943

    Google Scholar 

  • Enquist BJ, Niklas KJ (2002) Global allocation rules for patterns of biomass partitioning in seed plants. Science 295: 1517–1520

    PubMed  CAS  Google Scholar 

  • Evans JR (1989) Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78: 9–19

    Google Scholar 

  • Feldman HA (1995) On the allometric mass exponent, when it exists. J Theor Biol 172: 187–197

    PubMed  CAS  Google Scholar 

  • Field C, Mooney HA (1986) The photosynthesis-nitrogen relationship in wild plants. In: Givnish TJ (ed), On the Economy of Plant Form and Function. Cambridge University Press, Cambridge, pp 25–55

    Google Scholar 

  • Gray BF (1981) On the “surface law” and basal metabolic rate. J Theor Biol 93: 757–767

    PubMed  CAS  Google Scholar 

  • Grime JP (1979) Plant Strategies and Vegetation Processes. Wiley, Chichester

    Google Scholar 

  • Güsewell S (2004) N:P ratios in terrestrial plants: variation and functional significance. New Phytol 164: 243–266

    Google Scholar 

  • Harvey PH (1982) Rethinking allometry. J Theor Biol 95: 37–41

    PubMed  CAS  Google Scholar 

  • Hemmingsen AM (1960) Energy metabolism as related to body size and respiratory surfaces, and its evolution. Reports of the Steno Memorial Hospital and Nordisk Insulin Laboratorium 9: 6–110

    Google Scholar 

  • Heusner A (1982) Energy metabolism and body size. I. Is the 0.75 mass exponent of Kleiber a statistical artifact? Resp Physiol 48: 1–12

    CAS  Google Scholar 

  • Hirose T, Werger MJA (1987) Maximizing daily canopy photosynthesis with respect to the leaf nitrogen allocation pattern in the canopy. Oecologia 72: 520–526

    Google Scholar 

  • Hunt R (1990) Basic Growth Analysis. Unwin Hyman, London

    Google Scholar 

  • Jackson RB, Mooney HA, Schulze ED (1997) A global budget for fine root biomass surface area and nutrient contents. Proc Natl Acad Sci USA 94: 7362–7366

    PubMed  CAS  Google Scholar 

  • Jolicoeur P (1990) Bivariate allometry: interval estimation of the sloped of the ordinary and standardized normal major axes and structural relationship. J Theor Biol 144: 275–285

    Google Scholar 

  • Karpinets TV, Greenwood DJ, Sams CE, Ammons JT (2006) RNA:protein ratio of the unicellular organism as a characteristic of phosphorus and nitrogen stoichiometry of the cellular requirement of ribosomes for protein synthesis. BMC Biol 4: 30

    PubMed  Google Scholar 

  • Kerkhoff AJ, Enquist BJ, Elser JJ, Fagan WF (2005) Plant allometry, stoichiometry and the temperature-dependence of primary productivity. Global Ecol Biogeogr 14: 585–598

    Google Scholar 

  • Kerkhoff AJ, Fagan WF, Elser JJ, Enquist BJ (2006) Phylogenetic and growth form variation in the scaling of nitrogen and phosphorus in the seed plants. Am Nat 168: E103–E122

    PubMed  Google Scholar 

  • Klausmeier CA, Litchman E, Daufresne T, Levin SA (2004) Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton. Nature 429: 171–174

    PubMed  CAS  Google Scholar 

  • Kleiber M (1932) Body size and metabolic rate. Physiol Rev 27: 511–541

    Google Scholar 

  • Kleiber M (1961) The Fire of Life. An Introduction to Animal Energetics. Wiley, New York

    Google Scholar 

  • Koerselman W, Meuleman AFM (1996) The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. J Appl Ecol 33: 1441–1450

    Google Scholar 

  • Lindstedt SL, Calder WA III (1981) Body size, physiological time, and longevity of homeothermic animals. Quart Rev Biol 56: 1–16

    Google Scholar 

  • Mathers EM, Houlihan DF, McCarthy ID, Burren LJ (1993) Rates of growth and protein-synthesis correlated with nucleic-acid content in fry of rainbow trout, Oncorhynchus mykiss - effects of age and temperature. J Fish Biol 43: 245–263

    CAS  Google Scholar 

  • Mattson WJ (1980) Herbivory in relation to plant nitrogen-content. Ann Rev Ecol Syst 11: 119–161

    Google Scholar 

  • McArdle BH (1988) The structural relationship: regression in biology. Can J Zool 66: 2329–2339

    Google Scholar 

  • McArdle BH (2003) Lines, models, and errors: regression in the field. Limnol Oceanogr 48: 1363–1366

    Google Scholar 

  • McKee MJ, Knowles CO (1987) Levels of protein, RNA, DNA, glycogen and lipid during growth and development of Daphnia magna Straus (Crustacea: Cladocera). Freshwater Biol 18: 342–351

    Google Scholar 

  • Meyer MM, Tukey HB Jr (1965) Nitrogen, phosphorus, and potassium plant reserves and the spring growth of Taxus and Forsythia. Proc Am Soc Hort Sci 87: 537–544

    CAS  Google Scholar 

  • Milberg P, Lamont BB (1997) Seed/cotyledon size and nutrient content play a major role in early performance of species on nutrient-poor soils. New Phytol 137: 665–672

    Google Scholar 

  • Mochizuki T, Hanada S (1958) The effect of nitrogen on the formation of the anisophylly on the terminal shoots of apple trees. Soil Plant Food 4: 68–74

    CAS  Google Scholar 

  • Nielsen SL, Enríquez S, Duarte CM, Sand-Jensen S (1996) Scaling maximum growth rates across photosynthetic organisms. Funct Ecol 10: 167–175

    Google Scholar 

  • Niklas KJ (1994) Size-dependent variations in plant growth rates and the “3/4-power rule”. Am J Bot 81: 134–144

    Google Scholar 

  • Niklas KJ (2004) Plant allometry: Is there a grand unifying theory? Biol Rev 79: 871–889

    PubMed  Google Scholar 

  • Niklas KJ (2006) Plant allometry, leaf nitrogen and phosphorus stoichiometry and interspecific trends in annual growth rates. Ann Bot 97: 155–163

    PubMed  CAS  Google Scholar 

  • Niklas KJ, Cobb ED (2005) N, P, and C stoichiometry of Eranthis hyemalis (L). Salib. (Ranunculaceae) and the allometry of plant growth. Am J Bot 92: 1263–1268

    Google Scholar 

  • Niklas KJ, Cobb ED (2006) Biomass partitioning and leaf N, P-stoichiometry: comparisons between tree and herbaceous current-year shoots. Plant Cell Environ 29: 2030–2042

    PubMed  CAS  Google Scholar 

  • Niklas KJ, Enquist BJ (2001) Invariant scaling relations for interspecific plant biomass production rates and body size. Proc Natl Acad Sci USA 98: 2922–2927

    PubMed  CAS  Google Scholar 

  • Niklas KJ, Enquist BJ (2002) On the vegetative biomass partitioning of seed plant leaves, stems, and roots. Am Nat 159: 1517–1520

    Google Scholar 

  • Niklas KJ, Owens T, Reich PB, Cobb ED (2005) Nitrogen/phosphorus leaf stoichiometry and the scaling of plant growth. Ecol Lett 8: 636–642

    Google Scholar 

  • Niklas KJ, Cobb ED, Niinemets Ü, Reich PB, Sellin A, Shipley B, Wright IJ (2007) “Diminishing returns” in the scaling of functional leaf traits across and within species groups. Proc Natl Acad Sci USA 104: 8894–8896

    Google Scholar 

  • Peters RH (1983) The Ecological Implications of Body Size. Cambridge University Press, Cambridge

    Google Scholar 

  • Prothero J (1986a) Scaling of energy-metabolism in unicellular organisms - a reanalysis. Comp Biochem Physiol A: Physiol 83: 243–248

    CAS  Google Scholar 

  • Prothero J (1986b) Methodological aspects of scaling in biology. J Theor Biol 118: 259–286

    PubMed  CAS  Google Scholar 

  • Rayner JMV (1985) Linear relations in biomechanics: the statistics of scaling functions. J Zool 206: 415–439

    Google Scholar 

  • Reich PB, Oleksyn J (2004) Global patterns of plant leaf N and P in relation to temperature and latitude. Proc Natl Acad Sci USA 101: 11001–11006

    PubMed  CAS  Google Scholar 

  • Reich PB, Tjoelker MG, Machado JL, Oleksyn J (2006) Universal scaling of respiratory metabolism, size and nitrogen in plants. Nature 439: 457–461

    PubMed  CAS  Google Scholar 

  • Rhee G-Y (1978) Effects of N:P atomic ratios and nitrate limitation on algal growth, cell composition, and nitrate uptake. Limnol Oceanogr 23: 10–25

    Article  CAS  Google Scholar 

  • Ryser P, Verduyn B, Lambers H (1997) Phosphorus allocation and utilization in three grass species with contrasting response to N and P supply. New Phytol 137: 293–302

    Google Scholar 

  • Sadava D (1993) Cell Biology: Organelles, Structure and Function. Jones and Bartlett, Boston, MA

    Google Scholar 

  • Sands PJ (1995) Modelling canopy production. I. Optimal distribution of photosynthetic resources. Aust J Plant Physiol 22: 603–614

    CAS  Google Scholar 

  • Schmidt-Nielsen K (1984) Scaling: Why Is Animal Size So Important? Cambridge University Press, Cambridge

    Google Scholar 

  • Seim E (1983) On rethinking allometry: which regression model to use? J Theor Biol 104: 161–168

    Google Scholar 

  • Sellers PJ, Berry JA, Collatz GJ, Field CB, Mooney HA (1992) Canopy reflectance photosynthesis and respiration. III. A reanalysis using improved leaf models and a new canopy integration scheme. Remote Sens Environ 42: 187–216

    Google Scholar 

  • Silver WL (1994) Is nutrient availability related to plant nutrient use in humid tropical forests. Oecologia 98: 336–343

    Google Scholar 

  • Sokal RR, Rohlf (1980) Biometry. Freeman, New York

    Google Scholar 

  • Smith RJ (1980) Rethinking allometry. J Theor Biol 87: 97–111

    PubMed  CAS  Google Scholar 

  • Sterner RW, Elser JJ (2002) Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Takashima T, Hikosaka K, Hirose T (2004) Photosynthesis or persistence: nitrogen allocation in leaves of evergreen and deciduous Quercus species. Plant Cell Environ 27: 1047–1054

    CAS  Google Scholar 

  • Taylor BK (1967) The nitrogen nutrition of the peach tree. I. Seasonal changes in nitrogenous constituents in mature trees. Aust J Biol Sci 20: 379–387

    CAS  Google Scholar 

  • Taylor BK, May LH (1967) The nitrogen nutrition of the peach tree. II. Storage and mobilization of nitrogen in young trees. Aust J Biol Sci 20: 389–411

    CAS  Google Scholar 

  • Tilman D (1988) Plant strategies and the dynamics and structure of plant communities. Monographs in Population Biology. Volume 26. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Vitousek P (1982) Nutrient cycling and nutrient use efficiency. Am Nat 119: 553–572

    Google Scholar 

  • Vogt KA, Grier CC, Vogt DJ (1986) Production, turnover, and nutrient dynamics of aboveground and belowground detritus of world forests. Adv Ecol Res 15: 303–377

    Google Scholar 

  • Vrede T, Dobberfuhl DR, Kooijman SALM, Elser JJ (2004) Fundamental connections among organism C:N:P stoichiometry, macromolecular composition and growth. Ecology 85: 1217–1229

    Google Scholar 

  • Warton D, Wright IJ, Falster DS, Westoby M (2006) Bivariate line-fitting methods in allometry. Biol Rev 81: 259–291

    PubMed  Google Scholar 

  • Watanabe T, Broadley MR, Jansen S, White PJ, Takada J, Satake K, Takamatsu T, Tuah SJ, Osaki M (2007) Evolutionary control of leaf element composition in plants. New Phytol 174: 516–523

    PubMed  CAS  Google Scholar 

  • Weibel ER (2002) Physiology - The pitfalls of power laws. Nature 417: 131–132

    PubMed  CAS  Google Scholar 

  • Weiher E, vanderWerf A, Thompson K, Roderick M, Garnier E, Eriksson O (1999) Challenging Theophrastus: a common core list of plant traits for functional ecology. J Veg Sci 10: 609–620

    Google Scholar 

  • Werger MJA, Hirose T (1991) Leaf nitrogen distribution and whole canopy photosynthetic carbon gain in herbaceous stands. Vegetatio 97: 11–20

    Google Scholar 

  • West GB, Brown JH, Enquist BJ (1997) A general model for the origin of allometric scaling laws in biology. Science 276: 122–126

    PubMed  CAS  Google Scholar 

  • West GB, Brown JH, Enquist BJ (1999) The fourth dimension of life: fractal geometry and allometric scaling of organisms. Science 284: 167–169

    Google Scholar 

  • West GB, Brown JH, Enquist BJ (2001) A general model for ontogenetic growth. Nature 413: 628–631

    PubMed  CAS  Google Scholar 

  • Westoby M, Wright IJ (2006) Land-plant ecology on the basis of functional traits. Trends Ecol Evol 21: 261–268

    PubMed  Google Scholar 

  • Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002) Plant ecological strategies: some leading dimensions of variation between species. Ann Rev Ecol Syst 33: 125–159

    Google Scholar 

  • Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas M-L, Niinemets Ü, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004) The worldwide leaf economics spectrum. Nature 428: 821–827

    PubMed  CAS  Google Scholar 

  • Wright IJ, Reich PB, Cornelissen JHC, Falster DS, Groom PK, Hikosaka K, Lee W, Lusk CH, Niinemets Ü, Oleksyn J, Osada N, Poorter H, Warton DI, Westoby M (2005) Modulation of leaf economic traits and trait relationships by climate. Global Ecol Biogeogr 14: 411–421

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Niklas, K.J. (2008). Carbon/nitrogen/phosphorus allometric relations across species. In: White, P.J., Hammond, J.P. (eds) The Ecophysiology of Plant-Phosphorus Interactions. Plant Ecophysiology, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8435-5_2

Download citation

Publish with us

Policies and ethics