Phosphorus and the future

  • John A. Raven
Part of the Plant Ecophysiology book series (KLEC, volume 7)

The approach taken here to considering these changes, and their probable effects on what remains of ‘natural’ plant populations, is to first consider what is known of plant-phosphorus interactions before man’s influences became significant, with current anthropogenic phosphorus mobilization now equaling natural processes (Tilman et al. 2001, 2002). This will give an appreciation of what plants, defined in the broad, non-phylogenetic sense as organisms that can produce oxygen by photosynthesis, did under natural conditions of phosphate supply, with an emphasis on biogeochemistry and evolution. Such considerations provide an evolutionary background of how plants from various habitats deal with changes in phosphate availability.

This background will then be used to reconsider how man’s activities in response to the forcing factors mentioned above (human population increase, exhaustion of mineral phosphate reserves, global environmental change) must be conditioned by the biogeochemistry of phosphate and the evolutionary history of crops. Finally, an attempt is made to assess priorities for action.


Global Environmental Change Marine Phytoplankton Cluster Root Phosphate Deficiency rRNA Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ågren GI (2004) The C:N:P stoichiometry of autotrophs–theory and observations. Ecol Lett 7: 185–191CrossRefGoogle Scholar
  2. Amtmann A, Hammond JP, Armengaud P, White PJ (2006) Nutrient sensing and signalling in plants: potassium and phosphorus. Adv Bot Res 43: 209–257CrossRefGoogle Scholar
  3. Andersson MX, Stridh MH, Larsson KE, Liljenberg C, Sandelius AS (2003) Phosphate-deficient oat replaces a major portion of the plasma membrane phospholipids with the galactolipid digalactosyldiacylglycerol. FEBS Lett 537: 128–132PubMedCrossRefGoogle Scholar
  4. Andersson MX, Larsson KE, Tjellström H, Liljenberg C, Sandelius AS (2005) Phosphate-limited oat. The plasma membrane and the tonoplast as major targets for phospholipid-to-glycolipid replacement and stimulation of phospholipases in the plasma membrane. J Biol Chem 280: 27578–27586PubMedCrossRefGoogle Scholar
  5. Banse K (1982) Cell volumes, maximal growth rates of unicellular algae and ciliates, and the role of ciliates in the marine pelagial. Limnol Oceanogr 27: 1059–1071CrossRefGoogle Scholar
  6. Beardall J, Roberts S, Raven JA (2005) Regulation of inorganic carbon acquisition by phosphorus limitation in the green alga Chlorella emersonii. Can J Bot 83: 859–864CrossRefGoogle Scholar
  7. Bertilsson S, Bergland O, Karl DM, Chisholm SW (2003) Elemental composition of marine Prochlorococcus and Synechococcus: implications for the ecological stoichiometry of the sea. Limnol Oceanogr 48: 1721–1731Google Scholar
  8. Birks HJB, Birks HH (2004) The rise and fall of forests. Science 305: 484–485PubMedCrossRefGoogle Scholar
  9. Bo ena KS, Zielinski P, Maeszewski S (2000) Involvement of glycolate metabolism in acclimation of Chlorella vulgaris cultures to low phosphate supply. Plant Physiol Biochem 38: 727–734CrossRefGoogle Scholar
  10. Bragg JG, Wagner A (2007) Protein carbon content evolves in response to carbon availability and may influence the fate of duplicated genes. Proc Roy Soc Lond B 274: 1063–1070CrossRefGoogle Scholar
  11. Broadley MR, Bowen HC, Cotterill HL, Hammond JP, Meacham MC, Mead A, White PJ (2004) Phylogenetic variation in the shoot mineral concentration of angiosperms. J Exp Bot 55: 321–336PubMedCrossRefGoogle Scholar
  12. Burkhardt S, Zondervan I, Riebesell U (1999) Effect of CO2 concentration on C:N:P ratio in marine phytoplankton. Limnol Oceanogr 44: 683–690CrossRefGoogle Scholar
  13. Chasen JL, Elser JJ (2007) The effect of host Chlorella NC64A carbon:phosphorus ratio on the production of Paramecium bursa Chlorella Virus -1. Freshwater Biol 52: 112–122CrossRefGoogle Scholar
  14. Dörmann P, Benning C (2002) Galactolipids rule in seed plants. Trends Plant Sci 7: 112–118PubMedCrossRefGoogle Scholar
  15. Dyhrman ST, Haley ST (2006) Phosphorus scavenging in the unicellular marine diazotroph Crocosphaera watsonii. Appl Environ Microbiol 72: 1452–1458PubMedCrossRefGoogle Scholar
  16. Dyhrman ST, Chappel PD, Haley ST, Moffett JW, Orchard ED, Waterbury JB, Webb EA (2006) Phosphonate utilization by the globally important marine diazotroph Trichodesmium. Nature 439: 68–71PubMedCrossRefGoogle Scholar
  17. Elser JJ, Fagan WF, Subramanian S, Kumar S (2006a) Signatures of ecological resource availability in the animal and plant proteomes. Mol Biol Evol 23: 1946–1951PubMedCrossRefGoogle Scholar
  18. Elser JJ, Watts J, Schampel JH, Farmer J (2006b) Early Cambrian food webs on a trophic knife-edge? A hypothesis and preliminary data from a modern stromatolite-based ecosystem. Ecol Lett 9: 295–303PubMedCrossRefGoogle Scholar
  19. Falkowski PG, Raven JA (2007) Photosynthesis in Aquatic Plants (2nd edition). Princeton University Press, Princeton, NJGoogle Scholar
  20. Falkowski PG, Katz ME, Knoll AH, Quigg A, Raven JA, Schofield O, Taylor FJR (2004) The evolution of modern eukaryotic phytoplankton. Science 305: 354–360PubMedCrossRefGoogle Scholar
  21. Finkel ZV, Quigg A, Raven JA, Reinfelder JR, Schofield OE, Falkowski PG (2006) Irradiance and elemental stoichiometry of marine phytoplankton. Limnol Oceanogr 51: 2690–2701CrossRefGoogle Scholar
  22. Frentzen M (2004) Phosphatidylglycerol and sulfoquinovosyldiacylglycerol: anionic membrane lipids and phosphate regulation. Curr Opin Plant Biol 7: 270–276PubMedCrossRefGoogle Scholar
  23. Gaude N, Tippmann H, Flemetakis E, Katinakis P, Udvardi M, Dormann P (2004) The galactolipid digalactosyldiacylglycerol accumulates in the peribacteroid membrane of nitrogen-fixing nodules of soybean and Lotus. J Biol Chem 279: 34624–34630PubMedCrossRefGoogle Scholar
  24. Geng JJ, Niu XJ, Jin XC, Wang XR, Gu XH, Edwards M, Glindemann D (2005) Simultaneous monitoring of phosphine and of phosphorus species in Taihu lake sediments and phosphine emissions from lake sediments. Biogeochem 76: 283–298CrossRefGoogle Scholar
  25. Gervais F, Riebesell U (2001) Effect of phosphorus limitation on elemental composition and stable isotope fractionation in a marine diatom growing under different CO2 concentrations. Limnol Oceanogr 46: 497–504Google Scholar
  26. Ghannoum O, Conroy JP (2007) Phosphorus deficiency inhibits growth in parallel with photosynthesis in a C3 (Panicum laxum) but not two C4 (P. coloratum and Cenchrus ciliaris) grasses. Funct Plant Biol 34: 72–81CrossRefGoogle Scholar
  27. Gillooly JF, Allen AP, Brown JH, Elser JJ, del Rio CM, Savage VM, West GB, Woodruff WH, Woods HA (2005) The metabolic basis of whole-organism RNA and phosphorus content. Proc Natl Acad Sci USA 102: 11923–11927PubMedCrossRefGoogle Scholar
  28. Giordano M, Norici A, Ratti S, Raven JA (2007) Role of sulphur for algae: acquisition, metabolism, ecology and evolution. In: Hell R, Leustek T, Knaff D et al. (eds), Sulfur Metabolism in Phototrophic Organisms, Springer, Dordrecht, The Netherlands pp 405–423Google Scholar
  29. Glindemann D, Edwards M, Schrems O (2004) Phosphine and methylphosphine production by simulated lightning - a study for the volatile phosphorus cycle and cloud formation in the earth atmosphere. Atmos Environ 38: 6867–6874CrossRefGoogle Scholar
  30. Gusewell S (2005) Nutrient resorption of wetland graminoids is related to the type of nutrient limitation. Funct Ecol 19: 344–354CrossRefGoogle Scholar
  31. Hammond JP, Bennett MJ, Bowen HC, Broadley MR, Eastwood DC, May ST, Rahn C, Swarup R, Woolaway KE, White PJ (2003) Changes in gene expression in Arabidopsis shoots during phosphate starvation and the potential for developing smart plants. Plant Physiol 132: 578–596PubMedCrossRefGoogle Scholar
  32. Hammond JP, Broadley MR, White PJ (2004) Genetic responses to phosphorus deficiency. Ann Bot 94: 323–332PubMedCrossRefGoogle Scholar
  33. Hedin LO (2004) Global organization of terrestrial plant-nutrient interactions. Proc Natl Acad Sci USA 101: 10849–10850PubMedCrossRefGoogle Scholar
  34. Heldal M, Scanlan DJ, Norland S, Thingstad F, Mann NH (2003) Elemental composition of single cells of various strains of marine Prochlorococcus and Synechococcus using X-ray microanalysis. Limnol Oceanogr 48: 1732–1743Google Scholar
  35. Hermans C, Hammond JP, White PJ, Verbruggen N (2006) How do plants respond to nutrient shortage by biomass allocation? Trends Plant Sci 11: 610–617PubMedCrossRefGoogle Scholar
  36. Ho TY, Quigg A, Finkel ZV, Milligan AJ, Wyman K, Falkowski PG, Morel FMM (2003) The elemental composition of some marine phytoplankton. J Phycol 39: 1145–1159CrossRefGoogle Scholar
  37. Jacob J (1995) Phosphate deficiency increases the rate constant of thermal dissipation of excitation energy by photosystem II in intact leaves of sunflower and maize. Funct Plant Biol 22: 417–424CrossRefGoogle Scholar
  38. Jain A, Cao A, Karthikeyan AS, Baldwin JC, Raghothama KG (2005) Phosphate deficiency suppresses expression of light-regulated psbO and psbP genes encoding extrinsic proteins of oxygen-evolving complex of PsII. Curr Sci 89: 1592–1596Google Scholar
  39. Karpinets TV, Greenwood DJ, Sams CE, Ammons JT (2006) RNA:phosphorus ratio of the unicellular organism as a characteristic of phosphorous and nitrogen stoichiometry and of the cellular requirement of ribosomes for protein synthesis. BMC Biol 4: 30PubMedCrossRefGoogle Scholar
  40. Kerkhoff AJ, Enquist BJ, Elser JJ, Fagan WF (2005) Plant allometry, stoichiometry and the temperature-dependence of primary productivity. Global Ecol Biogeogr 14: 585–598CrossRefGoogle Scholar
  41. Kerkhoff AJ, Fagan WF, Elser JJ, Enquist BJ (2006) Phylogenetic and growth form variation in the scaling of nitrogen and phosphorus in the seed plants. Am Nat 168: E103–E122PubMedCrossRefGoogle Scholar
  42. Klappenbach JA, Dunbar JM, Schmidt TM (2000) rRNA operon copy number reflects ecological strategies of bacteria. Appl Environ Microbiol 66: 1328–1333PubMedCrossRefGoogle Scholar
  43. Kobayashi K, Masuda T, Takamiya K-I, Ohta H (2006) Membrane lipid alteration during phosphate starvation is regulated by phosphate signaling and auxin/cytokinin cross-talk. Plant J 47: 238–248PubMedCrossRefGoogle Scholar
  44. Konhauser KO, Lalonde SV, Amskold L, Holland HD (2007) Was there an Archean phosphate crisis? Science 315: 1234PubMedCrossRefGoogle Scholar
  45. Kuang Y, Huisman J, Elser JJ (2004) Stoichiometric plant-herbivore models and their interpretation. Math Biosci Eng 1: 215–222PubMedGoogle Scholar
  46. Kyle M, Acharya K, Weider LJ, Looper K, Elser JJ (2006) Coupling of growth rate and body stoichiometry in Daphnia: a role for maintenance processes? Freshwater Biol 51: 2087–2095CrossRefGoogle Scholar
  47. Lahner B, Gong J, Mahmoudian M, Smith EL, Abid KB, Rogers EE, Guerinot ML, Harper JF, Ward JM, McIntyre L, Schroeder JI, Salt DE (2003) Genomic scale profiling of nutrient and trace elements in Arabidopsis thaliana. Nature Biotech 21: 1215–1221CrossRefGoogle Scholar
  48. Lambers H, Poot P (2003) (eds) Structure and Function of Cluster Roots and Plant Responses to Phosphate Deficiency. Kluwer, Dordrecht, The Netherlands, 376 ppGoogle Scholar
  49. Leonardos N, Geider RJ (2005) Elevated carbon dioxide increases organic carbon fixation by Emiliania huxleyi (Haptophyta) under nutrient-limited high-light conditions. J Phycol 41: 1196–1203CrossRefGoogle Scholar
  50. Martiny AC, Coleman ML, Chisholm SW (2006) Phosphate acquisition genes in Prochlorococcus ecotypes: evidence for genome-wide adaptation. Proc Natl Acad Sci USA 103: 12552–12557PubMedCrossRefGoogle Scholar
  51. McGroddy ME, Daufresne T, Hedin LO (2004) Scaling of C:N:P stoichiometry in forests worldwide: implications for terrestrial Redfield-like ratios. Ecology 85: 2390–2401CrossRefGoogle Scholar
  52. Mills MM, Ridame C, Davey M, La Roche J, Geider RJ (2004) Iron and phosphorus co-limitation in the eastern tropical North Atlantic. Nature 429: 292–294PubMedCrossRefGoogle Scholar
  53. Morcuende R, Bari R, Gibon Y, Zheng WM, Pant BD, Blasing O, Usadel B, Czechowski T, Udvardi MK, Stitt M, Scheible WR (2007) Genome-wide reprogramming of metabolism and regulatory networks of Arabidopsis in response to phosphorus. Plant Cell Environ 30: 85–112PubMedCrossRefGoogle Scholar
  54. Niklas KJ (2006) Plant allometry, leaf nitrogen and phosphorus stoichiometries, and interspecific trends in annual growth rates. Ann Bot 97: 155–163PubMedCrossRefGoogle Scholar
  55. Niklas KJ, Cobb ED (2006) Biomass partitioning and leaf N, P-stoichiometry: comparisons between tree and herbaceous current-year shoots. Plant Cell Environ 29: 2030–2042PubMedCrossRefGoogle Scholar
  56. Niklas KJ, Owens T, Reich PR, Cobb ED (2005) Nitrogen/phosphorus leaf stoichiometry and the scaling of plant growth. Ecol Lett 8: 636–642CrossRefGoogle Scholar
  57. Pasek MA, Lauretta DS (2005) Aqueous corrosion of phosphide minerals from iron meteorites: a highly reactive source of prebiotic phosphorus on the surface of the early Earth. Astrobiology 5: 515–535PubMedCrossRefGoogle Scholar
  58. Pasek MA, Dworkin JP, Lauretta DS (2007) A radical pathway for organic phosphorylation during schreibesite corrosion with implications for the origin of life. Geochim Cosmochim Acta 71: 1721–1736CrossRefGoogle Scholar
  59. Paytan A, McLaughlin K (2007) The oceanic phosphorus cycle. Chem Rev 107: 563–576PubMedCrossRefGoogle Scholar
  60. Quigg A, Finkel ZV, Irwin AJ, Rosenthal Y, Ho TY, Reinfelder JR, Schofield O, Morel FMM, Falkowski PG (2003) The evolutionary inheritance of elemental stoichiometry in marine phytoplankton. Nature 425: 291–294PubMedCrossRefGoogle Scholar
  61. Raven JA (1989) Fight or flight: the economics of repair and avoidance of photoinhibition of photosynthesis. Funct Ecol 3: 5–19CrossRefGoogle Scholar
  62. Raven JA (1994) The cost of photoinhibition of plant communities. In: Baker NR, Bowyer JR (eds), Photoinhibition of Photosynthesis. Bioscientific, Oxford, pp. 449–464Google Scholar
  63. Raven JA (2006) Aquatic viruses: the emerging story. J Mar Biol Assoc UK 86: 449–451CrossRefGoogle Scholar
  64. Raven JA, Handley LL, Andrews M (2002) Optimizing carbon-nitrogen budgets: prospects for crop improvement. In: Foyer CH, Noctor G (eds), Photosynthetic Nitrogen Assimilation and Associated Carbon and Respiratory Metabolism. Kluwer, Dordrecht, The Netherlands, pp 265–274Google Scholar
  65. Raven JA, Handley LL, Andrews M (2004) Global aspects of C/N interactions determining plant-environment interactions. J Exp Bot 55: 11–25PubMedCrossRefGoogle Scholar
  66. Raven JA, Andrews M, Quigg A (2005a) The evolution of oligotrophy: implications for the breeding of crop plants for low input agricultural systems. Ann Appl Biol 146: 261–280CrossRefGoogle Scholar
  67. Raven JA, Finkel ZV, Irwin AJ (2005b) Picophytoplankton: bottom-up and top-down controls on ecology and evolution. Vie Milieu 55: 209–215Google Scholar
  68. Redfield AC (1958) The biological control of chemical factors in the environment. Am Sci 46: 205–221Google Scholar
  69. Reich PB, Oleksyn J (2004) Global patterns of plant leaf N and P in relation to temperature and latitude. Proc Natl Acad Sci USA 101: 11001–11006PubMedCrossRefGoogle Scholar
  70. Sañudo-Wilhelmy SA, Kustka AB, Gobler CJ, Hutchins DA, Yang M, Lwiza K, Burns J, Capone DG, Raven JA, Carpenter EJ (2001) Phosphorus limitation of nitrogen fixation by Trichodesmium in the central Atlantic Ocean. Nature 411: 66–69PubMedCrossRefGoogle Scholar
  71. Schaefer J, Skokut TA, Stejskal EO, McKay RA, Varner JE (1990) Estimation of protein-turnover in soybean leaves using magic angle double cross-polarization N-15 nuclear magnetic resonance. J Biol Chem 256: 11574–11579Google Scholar
  72. Scheurwater I, Dünnebacke M, Eising R, Lambers H (2000) Respiratory costs and rate of protein turnover in the roots of a fast-growing (Dactylis glomerata L.) and a slow-growing (Festuca ovina L.) grass species. J Exp Bot 51: 1089–1097PubMedCrossRefGoogle Scholar
  73. Schulze J, Temple G, Temple SJ, Beschow H, Vance CP (2006) Nitrogen fixation by white lupin under phosphorus deficiency. Ann Bot 98: 731–740PubMedCrossRefGoogle Scholar
  74. Shu L, Schneider P, Jegatheesan V, Johnson J (2005) An economic evaluation of phosphorus recovery as struvite from digester supernatant. Bioresource Technol 97: 2211–2216CrossRefGoogle Scholar
  75. Smith SE, Read DJ (2007) Mycorrhizal Symbiosis (3rd edition). Elsevier, LondonGoogle Scholar
  76. Sterner RW, Elser JJ (2002) Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton, NJGoogle Scholar
  77. Ticconi CA, Abel S (2004) Short on phosphate: plant surveillance and countermeasures. Trends Plant Sci 9: 548–555PubMedCrossRefGoogle Scholar
  78. Tilman D, Fargione J, Wolff B, D’Antonio C, Dobson A, Howarth R, Schindler D, Schlesinger WH, Simberloff D, Swackhamer D (2001) Forecasting agriculturally driven global environmental change. Science 292: 281–284PubMedCrossRefGoogle Scholar
  79. Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418: 671–677PubMedCrossRefGoogle Scholar
  80. Tyrrell T (1999) The relative influence of nitrogen and phosphorus on oceanic primary productivity. Nature 400: 525–531CrossRefGoogle Scholar
  81. Van Mooy BAS, Rocap G, Fredicks HF et al (2006) Sulfolipids dramatically decrease phosphorus demand by picocyanobacteria in oligotrophic marine environments. Proc Natl Acad Sci USA 103: 8607–8612PubMedCrossRefGoogle Scholar
  82. Vitousek PM, Cassman K, Cleveland C, Crews T, Field CB, Grimm NB, Howarth RW, Marino R, Martinelli L, Rastetter EB, Sprent JI (2002) Towards an ecological understanding of nitrogen fixation. Biogeochem 57: 1–45CrossRefGoogle Scholar
  83. Wardle DA, Walker LR, Bardgett RD (2004) Ecosystem properties and forest decline in contrasting long-term chronosequences. Science 305: 509–513PubMedCrossRefGoogle Scholar
  84. Wasaki J, Yonetani R, Kuroda S, Shinano T, Yazaki J, Fujii F, Shimbo K, Yamamoto K, Sakata K, Sasaki T, Kishimoto N, Kikuchi S, Yamagishi M, Osaki M (2003) Transcriptomic analysis of metabolic changes by phosphorus stress in rice plant roots. Plant Cell Environ 36: 1515–1523CrossRefGoogle Scholar
  85. Wasaki J, Shinano T, Onishi K, Yonetani R, Yazaki J, Fujii F, Shimbo K, Ishikawa M, Shimatani Z, Nagata Y, Hashimoto A, Ohta T, Sato Y, Miyamoto C, Honda S, Kojima K, Sasaki T, Kishimoto N, Kikuchi S, Osaki M (2006) Transcriptomic analysis indicates putative metabolic changes caused by manipulation of phosphorus availability in rice leaves. J Exp Bot 57: 2049–2059PubMedCrossRefGoogle Scholar
  86. Williams RJP (1981) The natural selection of the elements. Proc Roy Soc Lond B 313: 361–397CrossRefGoogle Scholar
  87. Williams RJP, Fráusta da Silva JJR (1996) The Natural Selection of the Chemical Elements. The Environment and Life’s Chemistry. Clarendon, OxfordGoogle Scholar
  88. Wright IJ, Reich PB, Cornelissen JHC, Falster DS, Garnier E, Hikosaka K, Lamont BB, Lee W, Oleksyn J, Osada N, Poorter H, Villar R, Warton DI, Westoby M (2005) Assessing the generality of global leaf trait relationships. New Phytol 166: 485–496PubMedCrossRefGoogle Scholar
  89. Yehudai-Resheff S, Zimmer SL, Komine Y, Stern DB (2007) Integration of chloroplast nucleic acid metabolism into the phosphate deprivation response in Chlamydomonas reinhardtii. Plant Cell 19: 1023–1038PubMedCrossRefGoogle Scholar
  90. Zagdanska B (1995) Respiratory energy demands for protein turnover and ion transport in wheat leaves upon water deficit. Physiol Plant 95: 428–436CrossRefGoogle Scholar
  91. Zerkle AL, House CH, Brantely SL (2005) Biogeochemical signatures through time as inferred from whole microbial genomes. Am J Sci 305: 467–502CrossRefGoogle Scholar
  92. Zhu F, Massana R, Not F, Marie D, Vaulot D (2005) Mapping of picoeukaryotes in marine ecosystems with quantitative PCR of the 18S rRNA gene. FEMS Microbiol Ecol 52: 79–92PubMedCrossRefGoogle Scholar
  93. Zhu RB, Kong DM, Sun LG, Geng JJ, Wang XR, Glindemann D (2006) Tropospheric phosphine and its sources in coastal Antarctica. Environ Sci Technol 40: 7656–7661PubMedCrossRefGoogle Scholar
  94. Zhu RB, Glindemann D, Kong DM, Sun LG, Geng JJ, Wang XR (2007) Phosphine in the marine atmosphere along a hemispheric course from China to Antarctica. Atmos Environ 41: 1567–1573CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • John A. Raven
    • 1
  1. 1.Division of Plant SciencesScottish Crop Research InstituteUK

Personalised recommendations