Skip to main content

Part of the book series: Plant Ecophysiology ((KLEC,volume 7))

In addition to carbon, hydrogen and oxygen, plants require at least 11 mineral elements to complete their life cycle, with another four mineral elements being potentially beneficial (Marschner 1995). The supply of three of these elements, nitrogen (N), phosphorus (P), and potassium (K) is often such that it limits the growth of plants in agricultural systems. To avoid yield losses and/or poor crop quality, the supply of these elements is ensured by the use of fertilizers. The supply of these elements by fertilizers must be optimized for the crop and its growth conditions. This optimization is necessary to avoid supplying too much of an element, which could have a negative affect on the crop yield or the local environment, or supplying too little of an element, which could prevent the crop from reaching its maximum potential yield. Typically, increasing the supply of a limiting element will increase the maximum yield up to a point (Figure 10.1). After this point, the maximum yield will remain constant (or even decline again) with further increases in the supply of the element. Therefore, supplying elements in excess of the optimum becomes uneconomic, since no extra yield will be realized for any additional input. Understanding the nutritional status of the crop is therefore critical to optimizing the supply of these elements. This chapter will review the potential of current and future techniques for establishing the P requirements of crop plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alva AK (1993) Comparison of Mehlich 3, Mehlich 1, ammonium bicarbonate-DTPA, 1.0M ammonium acetate and 0.2M ammonium chloride for extraction of calcium, magnesium, phosphorus, and potassium for a wide range of soils. Commun Soil Sci Plant Anal 24: 603–612

    Article  CAS  Google Scholar 

  • Amer F, Bouldin DR, Black CA, Duke FR (1955) Characterization of soil phosphorus by anion exchange resin adsorption and P32-equilibration. Plant Soil 6: 391–408

    Article  CAS  Google Scholar 

  • Amtmann A, Hammond JP, Armengaud P, White PJ (2006) Nutrient sensing and signalling in plants: potassium and phosphorus. Adv Bot Res 43: 209–257

    Article  CAS  Google Scholar 

  • Ascencio J (1994) Acid phosphatase as a diagnostic tool. Commun Soil Sci Plant Anal 25: 1553–1564

    Article  CAS  Google Scholar 

  • Bailey JS, Beattie JAM, Kilpatrick DJ (1997a) The diagnosis and recommendation integrated system (DRIS) for diagnosing the nutrient status of grassland swards: I. Model establishment. Plant Soil 197: 127–135

    Article  CAS  Google Scholar 

  • Bailey JS, Cushnahan A, Beattie JAM (1997b) The diagnosis and recommendation integrated system (DRIS) for diagnosing the nutrient status of grassland swards: II. Model calibration and validation. Plant Soil 197: 137–147

    Article  CAS  Google Scholar 

  • Bailey JS, Dils RA, Foy RH, Patterson D (2000) The diagnosis and recommendation integrated system (DRIS) for diagnosing the nutrient status of grassland swards: III. Practical applications. Plant Soil 222: 255–262

    Article  CAS  Google Scholar 

  • Barraclough PB, Bollons HM, Chambers BJ, Bhogal A, Hatley D (2000) Development of on-farm plant tests for phosphate and potassium in wheat. Home Grown Cereals Authority Project Report No. 224

    Google Scholar 

  • Bar-Yosef B (2003) Phosphorus dynamics. In: DK Benbi, R Nieder (eds) Handbook of Processes and Modeling in the Soil-Plant System. Haworth Reference Press, New York, pp 483–524

    Google Scholar 

  • Beaufils ER (1971) Physiological diagnosis - a guide for improving maize production based on principles developed for rubber trees. Fert Soc S Afr J 1: 1–30

    Google Scholar 

  • Beaufils ER (1973) Diagnosis and recommendation integrated system (DRIS): a general scheme for experimentation and calibration based on principles developed from research in plant nutrition. University of Natal, Soil Science Bulletin 1

    Google Scholar 

  • Benning C (1998) Biosynthesis and function of the sulfolipid sulfoquinovosyl diacylglycerol Annu Rev Plant Phys 49: 53–75

    Article  CAS  Google Scholar 

  • Bergmann W (1992) Nutritional Disorders of Plants. Visual and Analytical Diagnosis. Gustav Fischer, Jena, Germany

    Google Scholar 

  • Beverly RB, Stark JC, Ojala JC, Embleton TW (1984) Nutrient diagnosis of ‘Valencia’ oranges by DRIS. J Am Soc Hort Sci 109: 649–654

    CAS  Google Scholar 

  • Bieleski RL, Ferguson IB (1983) Physiology and metabolism of phosphate and its compounds. In: A Läuchli, RL Bieleski (eds), Encyclopedia of Plant Physiology, New Series, Vol. 15A. Springer, Berlin, pp 422–449

    Google Scholar 

  • Bissani CA, Tedesco MJ, Camargo FAD, Miola GL, Gianello C (2002) Anion-exchange resins and iron oxide-impregnated filter paper as plant available phosphorus indicators in soils. Commun Soil Sci Plant Anal 33: 1119–1129

    Article  CAS  Google Scholar 

  • Black CA (1993) Soil Fertility Evaluation and Control. Lewis, Boca Raton, FL

    Google Scholar 

  • Bollons HM, Barraclough PB (1997) Inorganic orthophosphate for diagnosing the phosphorus status of wheat plants. J Plant Nutr 20: 641–655

    Article  CAS  Google Scholar 

  • Boonham N, Walsh K, Smith P, Madagan K, Graham I, Barker I (2003) Detection of potato viruses using microarray technology: towards a generic method for plant viral disease diagnosis. J Virol Methods 108:181–87

    Article  PubMed  CAS  Google Scholar 

  • Boonham N, Tomlinson J, Mumford R (2007) Microarrays for rapid identification of plant viruses Annu Rev Phytopathol 45: 307–328

    Article  PubMed  CAS  Google Scholar 

  • Bould C, Hewitt EJ, Needham P (1983) Diagnosis of Mineral Disorders in Plants. Volume 1: Principles. HMSO, London

    Google Scholar 

  • Bray RH, Kurtz LT (1945) Determination of total, organic, and available forms of phosphorus in soils. Soil Sci 59: 39–45

    Article  CAS  Google Scholar 

  • Broadley MR, Burns A, Burns IG (2002) Relationships between phosphorus forms and plant growth. J Plant Nutr 25: 1075–1088

    Article  CAS  Google Scholar 

  • Burns IG, Hutsby W (1984) Development and evaluation of rapid tests for the estimation of phosphate and potassium in plant sap. Commun Soil Sci Plant Anal 15: 1463–1480

    Article  CAS  Google Scholar 

  • Campbell LC (1994) Plant and soil analysis: An Australian perspective. Commun Soil Sci Plant Anal 25: 767–780

    Article  CAS  Google Scholar 

  • Cantarella H, Quaggio JA, van Raij B, de Abreu MF (2006) Variability of soil analysis in commercial laboratories: implications for lime and fertilizer recommendations. Commun Soil Sci Plant Anal 37: 2213–2225

    Article  CAS  Google Scholar 

  • Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene expression. Science 263: 802–805

    Article  PubMed  CAS  Google Scholar 

  • Chang SC, Jackson ML (1957) Fractionation of soil phosphorus. Soil Sci 84: 133–144

    Article  CAS  Google Scholar 

  • Chen JJ (2007) Key aspects of analyzing microarray gene-expression data. Pharmacogenomics 8: 473–482

    Article  PubMed  CAS  Google Scholar 

  • Chien SH (1978) Reactions of phosphate rocks, rhenania phosphate, and super-phosphate with an acid soil. Soil Sci Soc Am J 42: 705–708

    CAS  Google Scholar 

  • Cirino NM, Musser KA, Egan C (2004) Multiplex diagnostic platforms for detection of biothreat agents. Expert Rev Mol Diagn 4: 841–857

    Article  PubMed  CAS  Google Scholar 

  • Clarkson DT, Scattergood CB (1982) Growth and phosphate transport in barley and tomato plants during the development of, and recovery from, phosphate-stress. J Exp Bot 33: 865–875

    Article  CAS  Google Scholar 

  • Claassens AS (1990) Factors influencing phosphorus uptake by plants: The dangers of misinterpretation of foliar phosphorus analysis. Commun Soil Sci Plant Anal 21: 1301–1312

    Article  CAS  Google Scholar 

  • Claassen N, Steingrobe B (1999) Mechanistic simulation models for a better understanding of nutrient uptake from soil. In: Z Rengel (ed), Mineral Nutrition of Crops. Fundamental Mechanisms and Implications. Haworth Press, New York, pp 327–367

    Google Scholar 

  • Clark LJ, Gowing DJG, Lark RM, Leeds-Harrison PB, Miller AJ, Wells DM, Whalley WR, Whitmore AP (2005) Sensing the physical and nutritional status of the root environment in the field: a review of progress and opportunities. J Agr Sci 143: 347–358

    Article  Google Scholar 

  • Cohen D (2007) Earth’s natural wealth: an audit. New Scientist 2605: 35–41

    Google Scholar 

  • Cohen M, Mylavarapu RS, Bogrekci I, Lee WS, Clark MW (2007) Reflectance spectroscopy for routine agronomic soil analyses. Soil Sci 172: 469–485

    Article  CAS  Google Scholar 

  • Colwell J (1963) The estimation of the phosphorus fertiliser requirements of wheat in southern New South Wales by soil analysis. Aust J Exp Agr Anim Husb 3: 190

    Article  CAS  Google Scholar 

  • Denison RF, Kiers ET (2005) Sustainable crop nutrition: constraints and opportunities. In: MR Broadley, PJ White (eds), Plant Nutritional Genomics. Blackwell, Oxford, pp 242–286

    Google Scholar 

  • Dyer B (1894) On the analytical determination of probable available “mineral” plant food in soils. J Chem Soc Trans 65: 115–167

    Article  CAS  Google Scholar 

  • Egnér H, Riehm H, Domingo WR (1960) Untersuchungen über die chemische Bodenanalyse als Grundlage für die Beurteilung des Nährstoffzustandes der Böden. II. Chemische Extraktionsmethoden zur Phosphor-und Kaliumbestimmung. Kungl Lantbrukshögsk Ann 26: 199–215

    Google Scholar 

  • Elwali AMO, Gascho GJ, Sumner ME (1985) DRIS norms for 11 nutrients in corn leaves. Agron J 77: 506–508

    Article  Google Scholar 

  • Essigmann B, Güler S, Narang RA, Linke D, Benning C (1998) Phosphate availability affects the thylakoid lipid composition and the expression of SQD1, a gene required for sulfolipid biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 95: 1950–1955

    Article  PubMed  CAS  Google Scholar 

  • Fixen PE, Grove JH (1990) Testing soils for phosphorus. In: RL Westerman (ed) Soil Testing and Plant Analysis (3rd edition). Soil Science Society of America, Madison, WI, pp 141–180

    Google Scholar 

  • Franco-Zorrilla JM, Martín AC, Leyva A, Paz-Ares J (2005) Interaction between phosphate-starvation, sugar, and cytokinin signaling in Arabidopsis and the roles of cytokinin receptors CRE1/AHK4 and AHK3. Plant Physiol 138: 847–857

    Article  PubMed  CAS  Google Scholar 

  • Frossard E, Brossard M, Hedley MJ, Metherell A (1995) Reactions controlling the cycling of P in soils. In: H Tiessen (ed), Phosphorus in the Global Environment: Transfers, Cycles and Management, Wiley, Chichester, pp 107–137

    Google Scholar 

  • Frossard E, Condron LM, Oberson A, Sinaj S, Fardeau JC (2000) Processes governing phosphorus availability in temperate soils. J Environ Qual 29: 15–23

    Article  CAS  Google Scholar 

  • George TS, Richardson AE (2008) Potential and limitations to improving crops for enhanced phosphorus utilization. In: White PJ, Hammond JP (eds), The Ecophysiology of Plant-Phosphorus Interactions. Springer, Dordrecht, The Netherlands, pp 247–270

    Chapter  Google Scholar 

  • Grava J (1975) Causes for variation in phosphorus soil tests. Commun Soil Sci Plant Anal 6: 129–138

    Article  CAS  Google Scholar 

  • Greenwood DJ, Wood JT, Cleaver TJ, Hunt J (1971) A theory of fertiliser response. J Agr Sci 77: 511–523

    Article  Google Scholar 

  • Greenwood DJ, Barnes A, Liu K, Hunt J, Cleaver TJ, Loquens SMH (1980) Relationships between the critical concentrations of nitrogen, phosphorus and potassium in 17 different vegetable crops and duration of growth. J Sci Food Agr 31: 1343–1353

    Article  CAS  Google Scholar 

  • Greenwood DJ, Karpinets TV, Stone DA (2001) Dynamic model for the effects of soil P and fertilizer P on crop growth, P uptake and soil P in arable cropping: model description. Ann Bot 88: 279–291

    Article  CAS  Google Scholar 

  • Goldstein AH (1992) Phosphate starvation inducible enzymes and proteins in higher plants. In: JL Wray (ed), Society for Experimental Biology Seminar Series 49: Inducible Plant Proteins. Cambridge University Press, Cambridge, pp 25–44

    Google Scholar 

  • Hahn S, Mergenthaler S, Zimmermann B, Holzgreve W (2005) Nucleic acid based biosensors: the desires of the user. Bioelectrochemistry 67: 151–154

    Article  PubMed  CAS  Google Scholar 

  • Hallmark WB, Beverly RB (1991) Review: an update in the use of the diagnosis and recommendation integrated system. J Fert Issues 8: 74–88

    Google Scholar 

  • Hammond JP, White PJ (2008) Sucrose transport in the phloem: integrating root responses to phosphorus starvation. J Exp Bot 59: 93–109

    Article  PubMed  CAS  Google Scholar 

  • Hammond JP, Bennett MJ, Bowen HC, Broadley MR, Eastwood DC, May ST, Rahn C, Swarup R, Woolaway KE, White PJ (2003) Changes in gene expression in Arabidopsis shoots during phosphate starvation and the potential for developing smart plants. Plant Physiol 132: 578–596

    Article  PubMed  CAS  Google Scholar 

  • Hammond JP, Broadley MR, White PJ (2004a) Genetic responses to phosphorus deficiency. Ann Bot 94: 323–332

    Article  PubMed  CAS  Google Scholar 

  • Hammond JP, White PJ, Broadley MR (2004b) Diagnosing phosphorus deficiency in plants. Asp Appl Biol 72: 89–98

    Google Scholar 

  • Haseloff J, Siemering KR, Prasher DC, Hodge S (1997) Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc Nat Acad Sci USA 94: 2122–2127

    Article  PubMed  CAS  Google Scholar 

  • Hermans C, Hammond JP, White PJ, Verbruggen N (2006) How do plants respond to nutrient shortage by biomass allocation? Trends Plant Sci 11: 610–617

    Article  PubMed  CAS  Google Scholar 

  • Higgs B, Johnston AE, Salter JL, Dawson CJ (2000) Some aspects of achieving sustainable phosphorus use in agriculture. J Environ Qual 29: 80–87

    Article  CAS  Google Scholar 

  • Holford ICR (1997) Soil phosphorus; its measurement, and its uptake by plants. Aust J Soil Res 35: 227–239

    Article  CAS  Google Scholar 

  • Hoch WA, Zeldin EL, McCown BH (2001) Physiological significance of anthocyanins during autumnal leaf senescence. Tree Physiol 21: 1–8

    PubMed  CAS  Google Scholar 

  • Jaeger J, Spang R (2006) Selecting normalization genes for small diagnostic microarrays. BMC Bioinformatics 7: 388

    Article  PubMed  CAS  Google Scholar 

  • Jain A, Vasconcelos MJ, Raghothama KG, Sahi SV (2007) Molecular mechanisms of plant adaptation to phosphate deficiency. Plant Breeding Rev 29: 359–419

    Article  CAS  Google Scholar 

  • Jefferson RA, Burgess SM, Hirsh D (1986) Beta-glucuronidase from Escherichia coli as a gene-fusion marker. Proc Nat Acad Sci USA 83: 8447–8451

    Article  PubMed  CAS  Google Scholar 

  • Jones JB, Case VW (1990) Sampling, handling, and analyzing plant tissue samples. In: Westerman RL (ed), Soil Testing and Plant Analysis (3rd edition). Soil Science Society of America, Madison, WI, pp 389–427

    Google Scholar 

  • Jungk A, Seeling B, Gerke J (1993) Mobilization of different phosphate fractions in the rhizosphere. Plant Soil 156: 91–94

    Article  Google Scholar 

  • Kamprath EJ, Watson ME (1980) Conventional soil and tissue tests for assessing the phosphorus status of soils. In: FH Khasawneh, EC Sample, EJ Kamprath (eds), The Role of Phosphorus in Agriculture. ASA/CSSA/SSSA, Madison, WI, pp 433–469

    Google Scholar 

  • Kara D, Özsavaşçi C, Alkan M (1997) Investigation of suitable digestion methods for the determination of total phosphorus in soils. Talanta 44: 2027–2032

    Article  PubMed  CAS  Google Scholar 

  • Karpinets TV, Greenwood DJ, Ammons JT (2004) Predictive mechanistic model of soil phosphorus dynamics with readily available inputs. Soil Sci Soc Am J 68: 644–653

    CAS  Google Scholar 

  • Karthikeyan AS, Varadarajan DK, Jain A, Held MA, Carpita NC, Raghothama KG (2007) Phosphate starvation responses are mediated by sugar signaling in Arabidopsis. Planta 225: 907–918

    Article  PubMed  CAS  Google Scholar 

  • Kirkby EA, Johnston AE (2008) Soil and fertilizer phosphorus in relation to crop nutrition. In: White PJ, Hammond JP (eds), The Ecophysiology of Plant-Phosphorus Interactions. Springer, Dordrecht, The Netherlands, pp 177–223

    Chapter  Google Scholar 

  • Kleinman PJA, Sharpley AN, Gartley K, Jarrell WM, Kuo S, Menon RG, Myers R, Reddy KR, Skogley EO (2001) Interlaboratory comparison of soil phosphorus extracted by various soil test methods. Commun Soil Sci Plant Anal 32: 2325–2345

    Article  CAS  Google Scholar 

  • Knowles TC, Doerge TA, Clark LJ (1990) Diagnosing phosphorus deficiency in irrigated durum wheat using basal stem phosphate tissue analysis. Commun Soil Sci Plant Anal 21: 2053–2065

    Article  CAS  Google Scholar 

  • Krizek BA, Prost V, Joshi RM, Stoming T, Glenn TC (2003) Developing transgenic Arabidopsis plants to be metal-specific bioindicators. Environ Toxicol Chem 22: 175–181

    Article  PubMed  CAS  Google Scholar 

  • Kuo S (1996) Phosphorus. In: DL Sparks (ed), Methods of Soil Analysis, Part 3, Chemical Methods. SSSA/ASA, Madison, WI, pp 869–919

    Google Scholar 

  • Lansford R, Bearman G, Fraser SE (2001) Resolution of multiple green fluorescent protein color variants and dyes using two-photon microscopy and imaging spectroscopy. J Biomed Opt 6: 311–318

    Article  PubMed  CAS  Google Scholar 

  • Leigh RA, Johnston AE (1986) An investigation of the usefulness of phosphorus concentrations in tissue water as indicators of the phosphorus status of field-grown spring barley. J Agr Sci 107: 329–333

    Article  Google Scholar 

  • Liebig J von (1855) Principles of Agricultural Chemistry with Special Reference to the Late Researches Made in England. Walton & Maberly, London

    Google Scholar 

  • Lynch JP, Brown KM (2008) Root strategies for phosphorus acquisition. In: White PJ, Hammond JP (eds), The Ecophysiology of Plant-Phosphorus Interactions. Springer, Dordrecht, The Netherlands, pp 83–116

    Chapter  Google Scholar 

  • Lyons NF (1997) Use of antibody coated mobile particles for the detection of plant pathogens. Final Report for MAFF Project HH1738SX

    Google Scholar 

  • Macy P (1936) The quantitative mineral nutrient requirements of plants. Plant Physiol 11: 749–764

    Article  PubMed  CAS  Google Scholar 

  • Major BJ, Barraclough PB (2003) Measuring inorganic orthophosphate in oilseed rape using reflectoquant technology. Commun Soil Sci Plant Anal 34: 2839–2851

    Article  CAS  Google Scholar 

  • Maleki MR, Mouazen AM, Ramon H, De Baerdemaeker J (2007) Optimization of soil VIS-NIR sensor-based variable rate application system of soil phosphorus. Soil Till Res 94: 239–250

    Article  Google Scholar 

  • Marschner H (1995) Mineral Nutrition of Higher Plants (2nd edition). Academic, London

    Google Scholar 

  • Martin T, Wöhner R-V, Hummel S, Willmitzer L, Frommer WB (1992) The GUS reporter system as a tool to study plant gene expression. In: SR Gallagher (ed), GUS Protocols: Using the GUS Gene as a Reporter of Gene Expression. Academic, San Diego, CA, pp 23–43

    Google Scholar 

  • McIntosh JL (1969) Bray and Morgan soil extractants modified for testing acid soils from different parent materials. Agron J 61: 259–265

    Article  CAS  Google Scholar 

  • Mead R, Pike DJ (1975) Review of response surface methodology from a biometric viewpoint. Biometrics 31: 803–851

    Article  PubMed  CAS  Google Scholar 

  • Mehlich A (1954) Determination of P, K, Na, Ca, Mg, and NH4. Soil Test Division, Mimeo. North Carolina Department of Agriculture, Raleigh, NC

    Google Scholar 

  • Mehlich A (1984) Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Commun Soil Sci Plant Anal 15: 1409–1416

    Article  CAS  Google Scholar 

  • Mengel K, Kirkby EA (2001) Principles of Plant Nutrition (5th edition). Kluwer, Dordrecht, The Netherlands

    Google Scholar 

  • Menon RG, Hammond LL, Sissingh HA (1988) Determination of plant-available phosphorus by the iron hydroxide impregnated filter-paper (Pi) soil test. Soil Sci Soc Am J 52: 110–115

    Google Scholar 

  • Menon RG, Chien SH, Chardon WJ (1997) Iron oxide-impregnated filter paper (Pi test). II. A review of its application. Nutr Cycl Agroecosys 47: 7–18

    Article  Google Scholar 

  • Misson J, Raghothama KG, Jain A, Jouhet J, Block MA, Bligny R, Ortet P, Creff A, Somerville S, Rolland N, Doumas P, Nacry P, Herrerra-Estrella L, Nussaume L, Thibaud M-C (2005) A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation. Proc Natl Acad Sci USA 102: 11934–11939

    Article  PubMed  CAS  Google Scholar 

  • Mitscherlich EA (1909) Das Gesetz des Minimums und das Gesetz des abnehmenden Bodenertrages. Landwirt Jahrb Schweiz 38: 537–552

    CAS  Google Scholar 

  • Morcuende R, Bari R, Gibon Y, Zheng WM, Pant BD, Bläsing O, Usadel B, Czechowski T, Udvardi MK, Stitt M, Scheible WR (2007) Genome-wide reprogramming of metabolism and regulatory networks of Arabidopsis in response to phosphorus. Plant Cell Environ 30: 85–112

    Article  PubMed  CAS  Google Scholar 

  • Morgan MF (1941) Chemical soil diagnosis by the Universal Soil Testing system. Connecticut Agric. Exp. Stn Bull 525: 22

    Google Scholar 

  • Morón A, Cozzolino D (2007) Measurement of phosphorus in soils by near infrared reflectance spectroscopy: effect of reference method on calibration. Commun Soil Sci Plant Anal 38: 1965–1974

    Article  CAS  Google Scholar 

  • Müller R, Morant M, Jarmer H, Nilsson L, Nielsen TH (2007) Genome-wide analysis of the Arabidopsis leaf transcriptome reveals interaction of phosphate and sugar metabolism. Plant Physiol 143: 156–171

    Article  PubMed  CAS  Google Scholar 

  • Müller R, Nilsson L, Nielsen LK, Nielsen TH (2005) Interaction between phosphate starvation signalling and hexokinase-independent sugar sensing in Arabidopsis leaves. Physiol Plant 124: 81–90

    Article  CAS  Google Scholar 

  • Murphy J, Riley J (1962) A modified single solution for the determination of phosphate in natural waters. Anal Chim Acta 27: 31–35

    Article  CAS  Google Scholar 

  • Myers RG, Pierzynski GM, Thien SJ (1995) Improving the iron oxide sink method for extracting soil phosphorus. Soil Sci Soc Am J 59: 853–857

    CAS  Google Scholar 

  • Myers RG, Sharpley AN, Thien SJ, Pierzynski GM (2005) Ion-sink phosphorus extraction methods applied on 24 soils from the continental USA. Soil Sci Soc Am J 69: 511–521

    Article  CAS  Google Scholar 

  • Neyroud JA, Lischer P (2003) Do different methods used to estimate soil phosphorus availability across Europe give comparable results? J Plant Nutr Soil Sci 166: 422–431

    Article  CAS  Google Scholar 

  • Nuernberg NJ, Leal JE, Sumner ME (1998) Evaluation of an anion-exchange membrane for extracting plant available phosphorus in soils. Commun Soil Sci Plant Anal 29: 467–479

    Article  CAS  Google Scholar 

  • Nuwaysir EF, Bittner M, Trent J, Barrett JC, Afshari CA (1999) Microarrays and toxicology: The advent of toxicogenomics. Mol Carcinogen 24: 153–159

    Article  CAS  Google Scholar 

  • Olsen SR, Cole CV, Watanabe FS, Dean LA (1954) Estimation of Available Phosphorus by Extraction with Sodium Bicarbonate (Circular 39). USDA, Washington DC

    Google Scholar 

  • Petrik J (2006) Diagnostic applications of microarrays. Transfusion Med 16: 233–247

    Article  CAS  Google Scholar 

  • Pinkerton A (1991) Critical phosphorus concentrations in oilseed rape (Brassica napus) and indian mustard (Brassica juncea) as affected by nitrogen and plant-age. Aust J Exp Agr 31: 107–115

    Article  CAS  Google Scholar 

  • Pittman JJ, Zhang H, Schroder JL, Payton ME (2005) Differences of phosphorus in Mehlich 3 extracts determined by colorimetric and spectroscopic methods. Commun Soil Sci Plant Anal 36: 1641–1659

    Article  CAS  Google Scholar 

  • Raghothama KG (1999) Phosphate acquisition. Annu Rev Plant Phys 50: 665–693

    Article  CAS  Google Scholar 

  • Rayment GE (2005) Statistical aspects of soil and plant test measurement and calibration in Australasia. Commun Soil Sci Plant Anal 36: 107–120

    Article  CAS  Google Scholar 

  • Richardson AE (2001) Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Aust J Plant Physiol 28: 897–906

    Google Scholar 

  • Robinson JB, McCarthy MG (1985) Use of petiole analysis for assessment of vineyard nutrient status in the Barossa district of South Australia. Aust J Exp Agr 25: 231–240

    Article  Google Scholar 

  • Rubio G, Liao H, Yan XL, Lynch JP (2003) Topsoil foraging and its role in plant competitiveness for phosphorus in common bean. Crop Sci 43: 598–607

    Article  Google Scholar 

  • Runge-Metzger A (1995) Closing the cycle: obstacles to efficient P management for improved global security. In: Tiessen H (ed), Phosphorus in the Global Environment: Transfers, Cycles and Management. Wiley, Chichester, pp 27–42

    Google Scholar 

  • Sessitsch A, Hackl E, Wenzl P, Kilian A, Kostic T, Stralis-Pavese N, Sandjong BT, Bodrossy L (2006) Diagnostic microbial microarrays in soil ecology. New Phytol 171: 719–736

    Article  PubMed  CAS  Google Scholar 

  • Sharpley A (1995) Identifying sites vulnerable to phosphorus loss in agricultural runoff. J Environ Qual 24: 947–951

    Article  CAS  Google Scholar 

  • Sibbesen E, Sharpley AN (1997) Setting and justifying upper critical limits for phosphorus in soils. In: H Tunney, OT Carton, PC Brookes, AE Johnston (eds), Phosphorus Loss from Soil to Water. CAB International, Cambridge, pp 151–176

    Google Scholar 

  • Sikora FJ, Howe PS, Hill LE, Reid DC, Harover DE (2005) Comparison of colorimetric and ICP determination of phosphorus in Mehlich 3 soil extracts. Commun Soil Sci Plant Anal 36: 875–887

    Article  CAS  Google Scholar 

  • Sissingh HA (1971) Analytical technique of the Pw method, used for assessment of the phosphate status of arable soils in the Netherlands. Plant Soil 34: 483–486

    Article  CAS  Google Scholar 

  • Smethurst PJ (2000) Soil solution and other soil analyses as indicators of nutrient supply: a review. Forest Ecol Manag 138: 397–411

    Article  Google Scholar 

  • Smillie GW, Syers JK (1972) Calcium chloride formation during extraction of calcareous soil with fluoride: II. Implications to the Bray-1 test. Soil Sci Soc Am Proc 36: 25–30

    Article  CAS  Google Scholar 

  • Solfanelli C, Poggi A, Loreti E, Alpi A, Perata P (2006) Sucrose-specific induction of the anthocyanin biosynthetic pathway in Arabidopsis. Plant Physiol 140: 637–646

    Article  PubMed  CAS  Google Scholar 

  • Soltanpour PN, Schwab AP (1977) New soil test for simultaneous extraction of macro-nutrients and micro-nutrients in alkaline soils. Commun Soil Sci Plant Anal 8: 195–207

    Article  CAS  Google Scholar 

  • Soltanpour PN, Malakouti MJ, Ronaghi A (1995) Comparison of diagnosis and recommendation integrated system and nutrient sufficiency range for corn. Soil Sci Soc Am J 59: 133–139

    Article  CAS  Google Scholar 

  • Sprengel C (1828) Von den Substanzen der Ackerkrume und des Untergrundes. J Techn Ökonom 2: 423–474; 3: 42–99, 313–352, and 397–421

    Google Scholar 

  • Sprengel C (1837) Die Bodenkunde oder die Lehre vom Boden. Immanuel Müller, Leipzig

    Google Scholar 

  • Steen I (1998) Phosphorus availability in the 21st century: Management of a non-renewable resource. Phosphorus Potassium 217: 25–31

    Google Scholar 

  • Stomp AM (1992) Histochemical localization of β-glucuronidase. In: SR Gallagher (ed), GUS Protocols: Using the GUS Gene as a Reporter of Gene Expression. Academic, San Diego, CA, pp 103–113

    Google Scholar 

  • Sumner ME (1979) Interpretation of foliar analyses for diagnostic purposes. Agron J 71: 343–348

    Article  CAS  Google Scholar 

  • Teng S, Keurentjes J, Bentsink L, Koornneef M, Smeekens S (2005) Sucrose-specific induction of anthocyanin biosynthesis in Arabidopsis requires the MYB75/PAP1 gene. Plant Physiol 139: 1840–1852

    Article  PubMed  CAS  Google Scholar 

  • Thomas GW, Peaslee DE (1973) Testing soils for phosphorus. In: LM Walsh, Beaton JD (eds), Soil Testing and Plant Analysis (Revised edition). Soil Science Society of America, Madison, WI, pp 115–132

    Google Scholar 

  • Ullrich-Eberius CI, Novacky A, Fischer E, Lüttge U (1981) Relationship between energy-dependent phosphate uptake and the electrical membrane potential in Lemna gibba G1. Plant Physiol 67: 797–801

    Article  PubMed  CAS  Google Scholar 

  • Vance CP (2001) Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in a world of declining renewable resources. Plant Physiol 127: 390–397

    Article  PubMed  CAS  Google Scholar 

  • Vance CP (2008) Plants without arbuscular mycorrhizae. In: White PJ, Hammond JP (eds), The Ecophysiology of Plant-Phosphorus Interactions. Springer, Dordrecht, The Netherlands, pp 117–142

    Chapter  Google Scholar 

  • van Raij B (1998) Bioavailable tests: alternatives to standard soil extractions. Commun Soil Sci Plant Anal 29: 1553–1570

    Article  Google Scholar 

  • van Raij B, Quaggio JA, da Silva NM (1986) Extraction of phosphorus, potassium, calcium, and magnesium from soils by an ion-exchange resin procedure. Commun Soil Sci Plant Anal 17: 547–566

    Article  Google Scholar 

  • van Vuuren JAJ, Meyer JH, Claassens AS (2006) Potential use of near infrared reflectance monitoring in precision agriculture. Commun Soil Sci Plant Anal 37: 2171–2184

    Article  CAS  Google Scholar 

  • Visser NV, Hink MA, Borst JW, van der Krogt GNM, Visser AJWG (2002) Circular dichroism spectroscopy of fluorescent proteins. FEBS Lett 521: 31–35

    Article  PubMed  CAS  Google Scholar 

  • Walworth JL, Sumner ME (1987) The diagnosis and recommendation integrated system (DRIS), Adv Soil Sci 6: 149–188

    Google Scholar 

  • White PJ, Hammond JP (2006) Updating the estimate of the sources of phosphorus in UK waters. Final Report on Defra project WT0701CSF

    Google Scholar 

  • White PJ, Hammond JP (2008) Phosphorus nutrition of terrestrial plants. In: White PJ, Hammond JP (eds), The Ecophysiology of Plant-Phosphorus Interactions. Springer, Dordrecht, The Netherlands, pp 51–81

    Chapter  Google Scholar 

  • White RE, Haydock KP (1970) Phosphate concentration in siratro as a guide to its phosphate status in the field. Aust J Exp Agr Anim Husb 10: 426–430

    Article  Google Scholar 

  • Withers PJA, Edwards AC, Foy RH (2001) Phosphorus cycling in UK agriculture and implications for phosphorus loss from soil. Soil Use Manage 17: 139–149

    Article  Google Scholar 

  • Wu P, Ma L, Hou X, Wang M, Wu Y, Liu F, Deng XW (2003) Phosphate starvation triggers distinct alterations of genome expression in Arabidopsis roots and leaves. Plant Physiol 132: 1260–1271

    Article  PubMed  CAS  Google Scholar 

  • Yang JE, Skogley EO, Georgitis SJ, Schaff BE, Ferguson AH (1991) Phytoavailability soil test - development and verification of theory. Soil Sci Soc Am J 55: 1358–1365

    Article  Google Scholar 

  • Zhang K, Greenwood DJ, White PJ, Burns IG (2007) A dynamic model for the combined effects of N, P and K fertilizers on yield and mineral composition; description and experimental test. Plant Soil 298: 81–98

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Hammond, J.P., White, P.J. (2008). Diagnosing phosphorus deficiency in crop plants. In: White, P.J., Hammond, J.P. (eds) The Ecophysiology of Plant-Phosphorus Interactions. Plant Ecophysiology, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8435-5_10

Download citation

Publish with us

Policies and ethics