Advertisement

N-Body Stellar Evolution

  • Jarrod R. Hurley
Part of the Lecture Notes in Physics book series (LNP, volume 760)

The advent of the Hubble Space Telescope (HST), with its ability to peer deep inside the globular clusters (GCs) of our Galaxy and resolve individual stars (Paresce et al. 1991), provided reason enough to include stellar evolution in cluster models.We only have to look at the beautiful images of stars in the core of, say, Omega Centauri (Carson, Cool & Grindlay 2000) to be motivated to produce colour-magnitude diagrams (CMDs) from simulations to match those emanating from HST. There are also a number of questions relating to stellar populations in star clusters that require a combination of stellar evolution and stellar dynamics for investigation.

Keywords

Black Hole Neutron Star White Dwarf Hubble Space Telescope Star Cluster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aarseth S. J., 2003, Gravitational N-Body Simulations. Cambridge University Press, CambridgeMATHCrossRefGoogle Scholar
  2. Baumgardt H., Makino J., 2003, MNRAS, 340, 227CrossRefADSGoogle Scholar
  3. Belczynski K., Kalogera V., Bulik T., 2002, ApJ, 572, 407CrossRefADSGoogle Scholar
  4. Bergeron P., Wesemael F., Beauchamp A., 1995, PASP, 107, 1047CrossRefADSGoogle Scholar
  5. Carson J. E., Cool A. M., Grindlay J. E., 2000, ApJ, 532, 461CrossRefADSGoogle Scholar
  6. Chernoff D. F., Weinberg M. D., 1990, ApJ, 351, 121CrossRefADSGoogle Scholar
  7. Dewi J. D. M., Pols O. R., Savonije G. J., van den Heuvel E. P. J., 2002, MNRAS, 331, 1027CrossRefADSGoogle Scholar
  8. Eggleton P. P., Fitchett M., Tout C. A., 1989, ApJ, 347, 998CrossRefADSGoogle Scholar
  9. Ferraro F. R., Paltrinieri B., Fusi Pecci F., Cacciari C., Dorman B., Rood R. T., 1997, ApJ, 484, L145CrossRefADSGoogle Scholar
  10. Grindlay J. E., Heinke C., Edmonds P. D., Murray S. S., 2001a, Science, 292, 2290CrossRefADSGoogle Scholar
  11. Grindlay J. E., Heinke C. O., Edmonds P. D., Murray S. S., Cool A. M., 2001b, ApJ, 563, L53CrossRefADSGoogle Scholar
  12. Hurley J. R., Pols O. R., Tout C. A., 2000, MNRAS, 315, 543CrossRefADSGoogle Scholar
  13. Hurley J. R., Shara M. M., 2003, ApJ, 589, 179CrossRefADSGoogle Scholar
  14. Hurley J. R., Tout C. A., Aarseth S. J., Pols O. R., 2001, MNRAS, 323, 630CrossRefADSGoogle Scholar
  15. Hurley J. R., Tout C. A., Aarseth S. J., Pols O. R., 2004, MNRAS, 355, 1207CrossRefADSGoogle Scholar
  16. Hurley J. R., Tout C. A., Pols O. R., 2002, MNRAS, 329, 897CrossRefADSGoogle Scholar
  17. Kroupa P., Tout C. A., Gilmore G., 1993, MNRAS, 262, 545ADSGoogle Scholar
  18. Kudritzki R. P., Reimers D., 1978, A&A, 70, 227ADSGoogle Scholar
  19. Kurucz R. L., 1992, in Barbuy B., Renzini A., eds, Proc. IAU Symp. 149, The Stellar Populations of Galaxies. Kluwer, Dordrecht, p. 225Google Scholar
  20. Mackey A. D., Gilmore G. F., 2003, MNRAS, 338, 85CrossRefADSGoogle Scholar
  21. Meylan G., Heggie D. C., 1997, A&ARv, 8, 1ADSGoogle Scholar
  22. Paresce F., Meylan G., Shara M., Baxter D., Greenfield P., 1991, Nature, 352, 297CrossRefADSGoogle Scholar
  23. Pols O. R., Schröder K. -P., Hurley J. R., Tout C. A., Eggleton P. P., 1998, MNRAS, 298, 525CrossRefADSGoogle Scholar
  24. Tout C. A., Aarseth S. J., Pols O. R., Eggleton P. P., 1997, MNRAS, 291, 732ADSGoogle Scholar
  25. Tout C. A., Pols O. R., Eggleton P. P., Han Z., 1996, MNRAS, 281, 257ADSGoogle Scholar
  26. Wielen R., 1968, Bull. Astron., 3, 127Google Scholar
  27. Yanny B., Guhathakurta P., Schneider D. P., Bahcall J. N., 1994, AJ, 435, L59CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Jarrod R. Hurley
    • 1
  1. 1.Centre for Astrophysics and Supercomputing, Swinburne University of TechnologyAustralia

Personalised recommendations