Single Photon Detection in the Long Wave Infrared

  • T. Ueda
  • Z. An
  • K. Hirakawa
  • S. Komiyama
Part of the Springer Proceedings in Physics book series (SPPHY, volume 119)


We developed a novel single-photon detector in the long wave infrared (LWIR) spectral region. The detector is a charge-sensitive infrared phototransistor (CSIP) fabricated in a GaAs/AlGaAs double quantum well (QW) structure, in which a photo-generated hole (+e) in the floating gate (upper QW) modulates the capacitively-coupled conductance of the underneath channel (lower QW). The high responsivity (R=4×106A/W) and specific detectivity (D*=1×1015cmHz1/2/W) are achieved. The dynamic range is extended beyond 107 (∼aW to pW) by repeatedly resetting the accumulated holes in the upper QW. The simple structure is feasible for detector array fabrication.


Quantum Well Double Quantum Noise Equivalent Power High Responsivity Single Photon Detection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Komiyama, S., Astavief, O., Antonov, V., kutsuwa, T., and Hirai, H.: ‘A single photon detector in the far-infrared range’, Nature, 403, 405–407, 2000PubMedCrossRefADSGoogle Scholar
  2. 2.
    Astavief, O., Komiyama, S., Kutsuwa, T., Antonov, V., Kawaguchi, Y., and Hirakawa, K.: ‘Single-photon detector in the microwave range’, App. Phys. Lett., 80, 4250–4252, 2002CrossRefADSGoogle Scholar
  3. 3.
    Hashiba, H., Antonov, V., Kulik, L., Tzalenchuk, A., Kleindschmid, P., Giblin, S., and Komiyama, S.: ‘Isolated quantum dot in application to terahertz photon counting’, Phys. Rev. B 73, 081310(R), 2006CrossRefADSGoogle Scholar
  4. 4.
    Kastner, M. A.: ‘The single electron transistor and artificial atoms’, Ann. Phys. 9, 885–894, 2000CrossRefGoogle Scholar
  5. 5.
    An, Z., Chen, J.C., Ueda, T., Komiyama, S., and Hirakawa, K.: ‘Infrared phototoransistor using capasitively coupled two-dimensional electron gas layers’, App. Phys. Lett., 86, 172126, 2005CrossRefADSGoogle Scholar
  6. 6.
    An, Z., Ueda, T., Chen, J.C., Komiyama, S., and Hirakawa, K.: ‘A sensitive double quantum well infrared phototransistor’, J. Appl. Phys., 100, 044509, 2006CrossRefADSGoogle Scholar
  7. 7.
    An, Z., Ueda, T., Komiyama, S., and Hirakawa, K.: ‘Metastable excited states of a closed quantum dot with high sensitivity to infrared photons’, Phys. Rev. B 75, 085417, 2007CrossRefADSGoogle Scholar
  8. 8.
    An, Z., Ueda, T., Komiyama, S., and Hirakawa, K.: ‘Reset Operation of Quantum Well Infrared Phototransitors’, IEEE T. Electron., July issue, 2007 (in print)Google Scholar
  9. 9.
    Beck, W. A., and Mirotznik, M. S.: ‘Microstrip antenna coupling for quantum-well infrared photodetectors’, Infrared Phys. Technol. 42, 189–198, 2001CrossRefADSGoogle Scholar
  10. 10.
    Levine, B.F.: ‘Quantum-well infrared photodetectors’, J. Appl. Phys., 74, R1–R81, 1993CrossRefADSGoogle Scholar
  11. 11.
    Richards, P.L.: ‘Bolometers for infrared and milimeter waves’,, J. Appl. Phys., 76, 1–24, 1994CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V 2008

Authors and Affiliations

  • T. Ueda
    • 1
  • Z. An
    • 1
  • K. Hirakawa
    • 2
  • S. Komiyama
    • 1
  1. 1.Department of Basic ScienceUniversity of TokyoTokyoJapan
  2. 2.Institute of Industrial ScienceUniversity of TokyoTokyoJapan

Personalised recommendations