Advertisement

Monte Carlo Study of Transport Properties of InN

  • S. Vitanov
  • V. Palankovski
Part of the Springer Proceedings in Physics book series (SPPHY, volume 119)

Abstract

We use a Monte Carlo (MC) approach to investigate the electron transport in Indium Nitride (InN). Simulations with two different setups (one with a bandgap of 1.89 eV and one with bandgap of 0.69 eV) and accounting for all relevant scattering mechanisms are conducted. Results for electron mobility as a function of free carrier concentration and electric field are compared to previous studies and discussed.

Keywords

Monte Carlo Electron Mobility Free Carrier Concentration Electron Drift Velocity Polar Optical Phonon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Wu et al. Phys. Rev. B 66, 201403 (2002)CrossRefADSGoogle Scholar
  2. [2]
    Davydov et al. Phys. Stat. Sol. B 230, R4–R6 (2002)CrossRefGoogle Scholar
  3. [3]
    Matsuoka et al. Appl. Phys. Lett. 81, 1246–1248 (2002)CrossRefADSGoogle Scholar
  4. [4]
    Tansley et al. J. Appl. Phys. 59, 3241–3244 (1986)CrossRefADSGoogle Scholar
  5. [5]
    Lambrecht et al. 11 EMIS Datareview Series, 151 (1994)Google Scholar
  6. [6]
    Fritsch et al. Phys. Rev. B 69, 165204 (2004)CrossRefADSGoogle Scholar
  7. [7]
    Chin et al. J. Appl. Phys 75, 7365–7372 (1994)CrossRefADSGoogle Scholar
  8. [8]
    Polyakov et al. J. Appl. Phys. 99, 113705 (2006)CrossRefADSGoogle Scholar
  9. [9]
    Vitanov et al., Lecture Notes in Comp. Science, 4310, Springer, 197–204 (2007)Google Scholar
  10. [10]
    Wright et al. J. Appl. Phys 82, 2833–2839 (1997)CrossRefADSGoogle Scholar
  11. [11]
    Bernardini et al. Phys. Rev. B 56, 10024–10027 (1997)CrossRefADSGoogle Scholar
  12. [12]
    Zoroddu et al. Phys. Rev. B 64, 045208 (2001)CrossRefADSGoogle Scholar
  13. [13]
    Bellotti et al. J. Appl. Phys. 85, 916–923 (1999)CrossRefADSGoogle Scholar
  14. [14]
    Polyakov et al. Appl. Phys. Lett. 88, 032101 (2006)CrossRefADSGoogle Scholar
  15. [15]
    O’Leary et al. J. Appl. Phys 83, 826–829 (1998)CrossRefADSGoogle Scholar
  16. [16]
    Sheleg et al. Neorg. Matt 15, 1598 (1979)Google Scholar
  17. [17]
    Kim et al. Phys. rev. B 53, 16310–16326 (1996)CrossRefADSGoogle Scholar
  18. [18]
    Wang et al. Phys. Stat. Sol. B 240, 45–54 (2003)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V 2008

Authors and Affiliations

  • S. Vitanov
    • 1
  • V. Palankovski
    • 1
  1. 1.Advanced Material and Device Analysis Group, IuETU ViennaAustria

Personalised recommendations