Introduction to the Physics of Molten Salt Reactors

  • E. Merle-Lucotte
  • D. Heuer
  • M. Allibert
  • Véronique Ghetta
  • C. Le Brun
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)

In the frame of a major re-evaluation of the molten salt reactor (MSR), we have developed a new concept called Thorium Molten Salt Reactor (TMSR), particularly well suited to fulfill the criteria chosen by the Generation IV forum. This reactor may be operated in simplified and safe conditions in the Th/233U fuel cycle with fluoride salts. Amongst all TMSR configurations, many studies have highlighted the configurations with no moderator in the core as simple and very promising. Since 233U does not exist on earth and is not being produced today, we aim at designing a critical MSR able to burn the Plutonium and the Minor Actinides produced in today’s reactors, and consequently to convert this Plutonium into 233U. Thus, the current fuel cycle can be closed thanks to TMSRs started with transuranic elements on a Thorium base, i.e. started in the Th/Pu fuel cycle, similarly to fast neutron reactors operated in the U/Pu fuel cycle. We analyze the characteristics of these reactor configurations, in terms of fissile matter inventory, salt reprocessing, waste production and burning, and finally deployment capabilities. Using a simple kinetic-point model, we analyze the reactor’s behaviour as the total reactivity margins are introduced in the core. We thus confirm, beyond the classical advantages of molten salt reactors, the satisfactory behaviour of the TMSR and the excellent level of deterministic safety which can be achieved in such reactors. We then illustrate how the reactor can be driven with no control rod, either by controlling the extracted power or by monitoring the operating temperature. Finally we stress the hardiness and the flexibility of this TMSR concept, allowing it to be adjustable without loosing its advantages in the event of any technological stumbling block.

Keywords

Molten salt reactor Thorium fuel cycle TMSR neutronic studies safety analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. d’Angelo A., 2002, Overview of the Delayed Neutron Data Activities and Results Monitored by the NEA/WPEC Subgroup 6, Prog. Nucl. En. 41(1-4):5-38.CrossRefGoogle Scholar
  2. de Saint Jean C., Delpech M., Tommasi J., Youinou G., Bourdot P., 2000, Scénarios CNE : réacteurs classiques, caractérisation à l’équilibre, CEA report DER/SPRC/LEDC/99-448.Google Scholar
  3. Berthou V., 2000, Le concept TASSE (Thorium ADS with simplified fuel cycle for long term energy production), Thèse de doctorat, Université d’Evry - Val d’Essonne.Google Scholar
  4. Bettis E.S. and Robertson R.C., 1970, The design and performance features of a single-fluid molten salt breeder reactor, Nucl. Appl. Technol. 8:190-207.Google Scholar
  5. Bowman C.D., 1998, Once-Through Thermal-Spectrum Accelerator-Driven System for LWR Waste Destruction Without Reprocessing: Tier-1 Description, ADNA/98-04.Google Scholar
  6. Briant R.C. and Weinberg A.M., 1957, Aircraft Nuclear Propulsion Reactor, Nuc. Sci. Eng. 2:795-853.Google Scholar
  7. Briesmeister J.F., 1997, MCNP4B-A General Monte Carlo N Particle Transport Code, Los Alamos Lab. report LA-12625-M.Google Scholar
  8. Furukawa K., Lecocq A., Kato Y., and Mitachi K., 1990, Thorium Molten-Salt Nuclear Energy Synergetics, J. Nucl. Sci. Technol. 27(12):1157-1178.CrossRefGoogle Scholar
  9. Furukawa K., Numata H., Kato Y., Mitachi K., Yoshioka R., Furuhashi A., Sato Y., and Arakawa K., 2005, New Primary Energy Source by Thorium Molten-Salt Reactor Technology, Electrochemistry 73(8):552-563.Google Scholar
  10. Haubenreich P.N. and Engel J.R., 1970, Experience with the Molten Salt Reactor Experiment, Nucl. Appl. Technol. 8:107-117.Google Scholar
  11. Heuer D., Merle-Lucotte E., and Mathieu L., 2006, Concept de réacteurs à sels fondus en cycle Thorium sans modérateur, Revue Générale du Nucléaire 5:92-99.Google Scholar
  12. Ignatiev V. and Walle E., 2005, Density of Molten Salt Reactor Fuel Salts, Nureth Conference, Avignon, France.Google Scholar
  13. Lecarpentier D., 2001, Le concept AMSTER, aspects physiques et sûreté, Thèse de doctorat, Conservatoire National des Arts et Métiers, France.Google Scholar
  14. Mathieu L., 2005, Cycle Thorium et Réacteurs à Sel Fondu : Exploration du champ des Paramètres et des Contraintes définissant le Thorium Molten Salt Reactor, thèse de doctorat, Institut National Polytechnique de Grenoble, France.Google Scholar
  15. Mathieu L., Heuer D., Brissot R., Garzenne C., Le Brun C., Lecarpentier D., Liatard E., Loiseaux J.M., Méplan O., Merle-Lucotte E., Nuttin A., Wilson J., Garzenne C., and Lecarpentier D., 2005, Proposition for a Very Simple Thorium Molten Salt Reactor, Proceedings of the Global international conference, Tsukuba, Japan.Google Scholar
  16. Mathieu L., Heuer D., Brissot R., Le Brun C., Liatard E., Loiseaux J.M., Méplan O., MerleLucotte E., and Nuttin A., 2006, The Thorium Molten Salt Reactor: Moving on from the MSBR, Prog. Nucl; En. 48:664-679.CrossRefGoogle Scholar
  17. Merle-Lucotte E., Mathieu L., Heuer D., Loiseaux J.-M., Billebaud A., Brissot R., David S., Garzenne C., Laulan O., Le Brun C., Lecarpentier D., Liatard E., Méplan O. Nuttin A., and Perdu F., 2004, Molten Salt Reactors and Possible Scenarios for Future Nuclear Power Deployment, Proceedings of the Physor 2004 Conference, The Physics of Fuel Cycles and Advanced Nuclear Systems: Global Developments, American Nuclear Society (Ed.), 1-12.Google Scholar
  18. Merle-Lucotte E., Heuer D., Le Brun C., and Loiseaux J.-M., 2006, Scenarios for a Worldwide Deployment of Nuclear Power, Int. J. Nucl. Gov. Econ. and Ecol., 1(2):168-192.Google Scholar
  19. Merle-Lucotte E., Heuer D., Allibert M., Ghetta V., Le Brun C, Mathieu L., Brissot R., and Liatard E., 2007a, Optimized Transition from the Reactors of Second and Third Generations to the Thorium Molten Salt Reactor, Proceedings of the International Congress on Advances in Nuclear Power Plants (ICAPP), Nice, France (2007).Google Scholar
  20. Merle-Lucotte E., Heuer D., Allibert M., Ghetta V., Le Brun C., Mathieu L., Brissot R., and Liatard E., 2007b, The Thorium Molten Salt Reactor: Launching the Thorium Cycle while Closing the Current Fuel Cycle, Proceedings of the European Nuclear Conference (ENC), Brussels, Belgium (2007)Google Scholar
  21. Nuttin A., Heuer D., Billebaud A., Brissot R., Garzenne C., Le Brun C., Lecarpentier D., Liatard E., Loiseaux J.M., Méplan O., Merle-Lucotte E., and Wilson J., 2005, Potential of Thorium Molten Salt Reactors, Prog. Nucl. En. 46:77-99.CrossRefGoogle Scholar
  22. Poignet J.-C. and Fouletier J.: Physico-Chemical Properties of Molten Salts, Proceedings of the NATO Advanced Study Institute on Materials for Generation-IV Nuclear Reactors, Cargèse, France (2007).Google Scholar
  23. Rosenthal M.W., Kasten P.R., and Briggs R.B., 1970, Molten Salt Reactors - History, Status, and Potential, Nucl. Appl; Technol. 8:107-117.Google Scholar
  24. Whatley M.E., McNeese L. E., Carter W.L., Ferris L. M., and Nicholson E.L., 1970, Engineering development of the MSBR fuel recycle, Nucl. Appl. Technol. 8:170-178.Google Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • E. Merle-Lucotte
    • 1
  • D. Heuer
    • 1
  • M. Allibert
    • 1
  • Véronique Ghetta
    • 1
  • C. Le Brun
    • 1
  1. 1.CNRS, Laboratoire de Physique Subatomique et de Cosmologie (LPSC)France

Personalised recommendations