Research and Development of Oxide Dispersion Strengthened Ferritic Steels for Sodium Cooled Fast Breeder Reactor Fuels

  • M. Inoue
  • T. Kaito
  • S. Ohtsuka
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)

Oxide dispersion strengthened (ODS) ferritic steels is eligible for fuel pin cladding tubes to endure heavy displacement damages to 250 dpa at high temperatures up to 973 K in commercialized sodium cooled fast breeder reactor cores. Japan Atomic Energy Agency has been developing ODS steels since 1987. For ODS steels, powder metallurgy process including mechanical alloying and hot consolidation produces highly stable and fine oxide dispersoids in matrix, and provides excellent dispersion hardening. Although cold rolling process in tube manufacturing tends to cause anisotropic grain growth, alpha to gamma phase transformation for the 9Cr-ODS steel and recrystallization for the 12Cr-ODS steel can modify grain morphology and improve creep rupture strength under internal pressure. Mechanical properties of the tubes have been extensively tested in air and stagnant sodium environments to establish Material Strength Standard for fuel pin mechanical design. Also, hundreds of specimens have been irradiated in the experimental fast reactor JOYO to investtigate irradiation effect on dimensional stability and mechanical properties. Pressurized resistance welding technology has been applied to join a tube and end plugs. Both 9Cr- and 12Cr-ODS steel tubes were assembled into fuel pins, and have been irradiated since 2003 under the collaborative program in the BOR-60 in Russia.


Hoop Stress Grain Morphology Oxide Dispersion Strengthened Fast Breeder Reactor Mother Tube 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bottcher, J., Ukai, S., and Inoue, M., 2002, ODS steel clad MOX fuel-pin fabrication and irradiation performance in EBR-II, Nucl. Technol. 138(3): 238-245.Google Scholar
  2. Kaito, T., Ukai, S., Ohtsuka, S., and Narita, T., 2005, Paper No.169, GLOBAL2005, October 9-13, 2005, Tsukuba, Japan.Google Scholar
  3. Kaito, T., Ohtsuka, S., and Inoue, M., 2007, Paper No.005-175716, GLOBAL2007, September 9-13, 2007, Idaho, USA.Google Scholar
  4. Narita, T., Ukai, S., Kaito, T., Ohtsuka, S., and Kobayashi, T., 2004, Development of twostep softening heat treatment for manufacturing 12Cr-ODS ferritic steel tubes, J. Nucl. Sci. Technol. 41(10):1008-1012.CrossRefGoogle Scholar
  5. Narita, T., Ukai, S., Kaito, T., Ohtsuka, S., and Fujiwara, M., 2005, Development of manufacturing process of PNC-FMS wrapper tube with SUS316 short joint, J. Nucl. Sci. Technol. 42(9):825-832. CrossRefGoogle Scholar
  6. Ohtsuka S., Ukai S., Fujiwara, M., Kaito, T., and Narita, T., 2004, Improvement of 9Cr-ODS martensitic steel properties by controlling excess oxygen and titanium contents, J. Nucl. Mater. 329-333(1):372-376.CrossRefADSGoogle Scholar
  7. Ohtsuka, S., Ukai, S., Sakasegawa, H., Fujiwara, M., Kaito, T., and Narita, T., 2005, Improvement of creep strength of 9Cr-ODS martensitic steel by controlling excess oxygen and titanium concentrations, Mater. Trans. 46(3):487-492.CrossRefGoogle Scholar
  8. Ohtsuka, S., Ukai, S., Fujiwara, M., Kaito, T., and Narita, T., 2005, Nano-structure control in ODS martensitic steel by means of selecting titanium and oxygen contents, J. Phys. Chem. Solids. 66(2-4):571-575.CrossRefADSGoogle Scholar
  9. Ohtsuka, S., Ukai, S., Sakasegawa, H., Fujiwara, M., Kaito, T., and Narita, T., 2007, Nanomesoscopic structural characterization of 9Cr-ODS martensitic steel for improving creep strength, J. Nucl. Mater. 367-370(1):160-165.CrossRefADSGoogle Scholar
  10. Seki, M., Hirako, K., Kono, S., Kihara, Y., Kaito, T., and Ukai, S., 2004, Pressurized resistance welding technology development in 9Cr-ODS martensitic steels, J. Nucl. Mater. 329-333(2):1534-1538.CrossRefADSGoogle Scholar
  11. Ukai, S., Mizuta, S., Fujiwara, M., Okuda, T., and Kobayashi, T., 2002, Development of 9CR-ODS martensitic steel claddings for fuel pin by means of ferrite to austenite phase transformation, J. Nucl. Sci. Technol. 39(7):778-788.CrossRefGoogle Scholar
  12. Ukai, S., Hatakeyama, H., Mizuta, S., Fujiwara, M., and Okuda, T., 2002, Consolidation process study of 9Cr-ODS martensitic steels, J. Nucl. Mater. 307-311(1):758-762.CrossRefADSGoogle Scholar
  13. Ukai, S., Kaito, T., Ohtsuka, S., Narita, T., Fujiwara, M., and Kobayashi, T., 2003, ISIJ International 43(12):2038-2045.CrossRefGoogle Scholar
  14. Ukai, S., Kaito, T., Seki, M., Mayorshin, A. A., and Shishalov, O. V., 2005, Oxide dispersion strengthened (ODS) fuel pin fabrication for BOR-60 irradiation test, J. Nucl. Sci. Technol. 42(1):109-122.CrossRefGoogle Scholar
  15. Ukai, S., Kaito, T., Ohtsuka, S., Narita, T., and Sakasegawa, H., 2006, ANS Annual Meeting, June 4-8, Reno, USA, Trans. Am. Nucl. Soc. 94:786-787.Google Scholar
  16. Yamashita, S., Akasaka, N., and Ohnuki, S., 2004, Nano-oxide particle stability of 9-12Cr grain morphology modified ODS steels under neutron irradiation, J. Nucl. Mater. 329-333 (1):377-381.CrossRefADSGoogle Scholar
  17. Yoshitake, T., Abe, Y., Akasaka, N., Ohtsuka, S., Ukai, S., and Kimura, A., 2004, Ringtensile properties of irradiated oxide dispersion strengthened ferritic/martensitic steel claddings, J. Nucl. Mater 329-333(1):342-346.CrossRefADSGoogle Scholar
  18. Yoshida, E., and Kato, S., 2004, Sodium compatibility of ODS steel at elevated temperature, J. Nucl. Mater. 329-333(2): 1393-1397.CrossRefADSGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • M. Inoue
    • 1
  • T. Kaito
    • 1
  • S. Ohtsuka
    • 1
  1. 1.Advanced Nuclear System Research and DevelopmentJapan Atomic Energy AgencyJapan

Personalised recommendations