Skip to main content

Multiscale Modeling of RPV Embrittlement

  • Conference paper
Materials Issues for Generation IV Systems

The multiscale modeling of the neutron irradiation embrittlement of reactor pressure vessel (RPV) steels is described. In this approach, information from experiments and computer simulations that cover very wide ranges of time and length scales is accumulated, correlated and integrated to develop a model for the prediction of embrittlement. Some examples from experiments and simulations are presented to show how they provide information to understand the fundamental mechanism of embrittlement, and then we describe how all the information is integrated into a mathematical form. A practical output of this approach is the development of a new embrittlement correlation method for Japanese RPV steels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackland, G. J., Bacon, D. J., Calder, A. F., and Harry, T., 1998, Computer simulation of point defect properties in dilute Fe-Cu alloy using a many body interatomic potential, Phil. Mag. 75:713-732.

    Google Scholar 

  • ASTM E900-02, Standard Guide for Predicting Radiation-Induced Transition Temperature Shift for Reactor Vessel Materials, E706(IIF), Annual Book of ASTM Standards, Vol. 12.02, American Society for Testing and Materials, West Conshohocken, PA.

    Google Scholar 

  • Brillaud, C., Hedin, F., and Houssin, B., 1987, A Comparison between French Surveillance Program Results and Predictions of Irradiation Embrittlement, Effects of Radiation on Materials: 13th International Symposium, ASTM STP 956, pp. 420-447.

    CAS  Google Scholar 

  • Carter, R. G., Soneda, N., Dohi, K., Hyde, J. M., English, C. A., and Server, W. L., 2001, Microstructural characterization of irradiation-induced Cu-enriched clusters in reactr pressure vessel steels, J. Nucl. Mater. 298:211-224.

    Article  CAS  ADS  Google Scholar 

  • Debarberis, L., Acosta, B., Sevini, F., Krykov, A., Gillemot, G., Valo, M., Kikolaev, A., and Brumovsky, M., 2005, Role of nickel in a semi-mechanistic analytical model for radiation embrittlement of model alloys, J. Nucl. Mater. 336:210-216.

    Article  CAS  ADS  Google Scholar 

  • Eason, E. D., Wright, J. E., and Odette, G. R., 1998, Improved EMbrittlement Correlations for Reactor Pressure Vessel Steels, NUREG/CR-6551.

    Google Scholar 

  • Hiranuma, N., Soneda, N., Dohi, K., Ishino, S., Dohi, N., and Ohata, H., 2004, Mechanistic Modeling of Transition Temperature Shift of Japanese RPV Materials, Proc. of 30th MPA-Seminar in conjunction with the 9th German-Japanese Seminar, Stuttgart, October 6 and 7, p. 3.1.

    Google Scholar 

  • Japan Electric Association, 1991, Method of Surveillance Tests for Structural Materials of Nuclear Reactors, JEAC4201-1991.

    Google Scholar 

  • Jones, R. B., and Williams, T. J., 1996, The dependence of radiation hardening and embrittlement on radiation temperature, in: Effects of Radiation on Materials, 17th International Symposium, vol. 1270, D. S. Gelles, R. K. Nanstead., A. S. Kumar, E. A. Little eds., ASTM.

    Google Scholar 

  • Kresse, G., and Furthmuller, J., 1996, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54:11169.

    Article  CAS  ADS  Google Scholar 

  • Marian, J., Wirth, B. D., Perlado, J. M., Odette, G. R., and Diaz de la Rubia, T., 2001, Dynamics of self-interstitial migration in Fe-Cu alloys, Phys. Rev. B 64:094303.

    Article  ADS  CAS  Google Scholar 

  • Miller, M. K., Burke, M. G., 1990, Fine-Scale Microstructural Characterization of Pressure Vessel Steels and Related Materials Using APFIM, Effects of Radiation on Materials, Proc. 14th International Symposium (Volume II), ASTM STP 1046:107.

    CAS  Google Scholar 

  • Odette, G. R., and Lucas, G. E., 1998, Recent progress in understanding reactor pressure vessel steel embrittlement, Radiation Effects & Defects in Solids 114:189-231.

    Article  Google Scholar 

  • Ortner, S., 2004, Microstructural Characterization of Reactor Pressure Vessel Steels: PostIrradiation Annealing Experiments, Joint EPRI-CRIEPI RPV Embrittlement Studies (1999-2004). EPRI, Palo Alto, CA: 2004, 1003531, and CRIEPI, Tokyo, Japan: Q980401.

    Google Scholar 

  • Soneda, N., and Diaz de la Rubia, T., 1998, Defect production, annealing kinetics and damage evolution in α-iron: an atomic-scale computer simulation, Phil. Mag. A 78:995-1019.

    Article  CAS  ADS  Google Scholar 

  • Soneda, N., Diaz de la Rubia, T., and Ishino, S., 2001, Vacancy loop formation by ‘cascade collapse’ in α-Fe: a molecular dynamics study of 50 keV cascade, Phil. Mag. Lett. 81:649-659.

    Article  CAS  ADS  Google Scholar 

  • Soneda, N., Ishino, S., Takahashi, A., and Dohi K., 2003, Modeling the microstructure evolution in bcc-Fe during irradiation using kinetic Monte Carlo computer simulation, J. Nucl. Mater. 323:169-180.

    Article  CAS  ADS  Google Scholar 

  • Soneda, N., Dohi, K., Ishino, S., and Takahashi, A., 2004, Computer simulation of the effect of neutron irradiation on the microstructural evolution in bcc-Fe, CRIEPI T03076.

    Google Scholar 

  • Soneda, N., Dohi, K., Nomoto, A., Nishida K., and Ishino, S., 2007, Development of Neutron Irradiation Embrittlement Correlation of Reacvtor Pressure Vessel Materials of Light Water Reactors, CRIEPI Q06019.

    Google Scholar 

  • Takahashi, A., Soneda, N., Ishino S., and Yagawa, G., 2002, Structures and energies of vacancy-Cu clusters in a-Fe, Phys. Rev. B 67:024104.

    Article  ADS  CAS  Google Scholar 

  • Takahashi, A., 2003, Multiscale simulation of materials strength, Ph.D. Thesis, The University of Tokyo.

    Google Scholar 

  • US Nuclear Safety Commission, 1988, Regulatory Guide 1.99 Revision 2, Radiation Embrittlement of Reactor Vessel Materials, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, Washington, DC.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this paper

Cite this paper

Soneda, N. (2008). Multiscale Modeling of RPV Embrittlement. In: Ghetta, V., Gorse, D., Mazière, D., Pontikis, V. (eds) Materials Issues for Generation IV Systems. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8422-5_12

Download citation

Publish with us

Policies and ethics