Microstructures and Mechanical Properties of Irradiated Metals and Alloys

  • S. J. Zinkle
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)

The effects of neutron irradiation on the microstructural evolution of metals and alloys are reviewed, with an emphasis on the roles of crystal structure, neutron dose and temperature. The corresponding effects of neutron irradiation on mechanical properties of metals and alloys are summarized, with particular attention on the phenomena of low temperature radiation hardening and embrittlement. The prospects of developing improved high-performance structural materials with high resistance to radiation-induced property degradation are briefly discussed.


Dislocation loops displacement cascades void swelling radiation hardening flow localization fracture toughness embrittlement structural materials ferritic/martensitic steels 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bacon, D. J., Gao, F., and Osetsky, Y. N., 2000, The primary damage state in fcc, bcc and hcp metals as seen in molecular dynamics simulations, J. Nucl. Mater. 276:1-12.CrossRefADSGoogle Scholar
  2. Bacon, D. J., Osetsky, Y. N., Stoller, R., and Voskoboinikov, R. E., 2003, MD description of damage production in displacement cascades in copper and alpha-iron, J. Nucl. Mater. 323 (2-3):152-162.CrossRefADSGoogle Scholar
  3. Basinski, Z. S., Szczerba, M. S., and Embury, J. D., 1997, Tensile instability in face-centred cubic materials, Phil. Mag. A 76(4):743-752.CrossRefADSGoogle Scholar
  4. Bement, A. L. Jr., 1970, Fundamental materials problems in nuclear reactors, 2nd Int. Conf. on Strength of Metals and Alloys, W. C. Leslie. Metals Park, OH, Am. Society for Metals. II:693-728.Google Scholar
  5. Boothby, R. M., 1996, The microstructure of fast neutron irradiated Nimonic PE16, J. Nucl. Mater. 230(2):148-157.CrossRefADSGoogle Scholar
  6. Byun, T. S., and Farrell, K., 2004, Irradiation hardening behavior of polycrystalline metals after low temperature irradiation, J. Nucl. Mater. 326:86-96.CrossRefADSGoogle Scholar
  7. Diehl, J., Siedel, G. P., and Weller, M., 1968, Neutron irradiation hardening of iron single crystals containing small amounts of carbon, Trans. Japanese Institute of Metals 9 Supplement (Proc. ICSMA-1):219-225.Google Scholar
  8. Ehrlich, K., Konys, J., and Heikinheimo, L., 2004, Materials for high performance light water reactors, J. Nucl. Mater. 327:140-147.CrossRefADSGoogle Scholar
  9. Eldrup, M., Singh, B. N., Zinkle, S. J., Buyn, T. S. and Farrel, K., 2002, Dose dependence of defect accumulation in neutron irradiated copper and iron, J. Nucl. Mater. 307-311: 912-917.CrossRefADSGoogle Scholar
  10. Farrell, K., Byun, T. S., and Hashimo, N., 2004, Deformation mode maps for tensile deformation of neutron-irradiated structural alloys, J. Nucl. Mater. 335(3):471-486.CrossRefADSGoogle Scholar
  11. Garner, F. A., Toloczko, M. B., and Sencer, B. H., 2000, Comparison of swelling and irradiation creep behavior of fcc-austenitic and bcc-ferritic/martensitic alloys at high neutron exposure, J. Nucl. Mater. 276:123-142.CrossRefADSGoogle Scholar
  12. Gelles, D. S., 1996, Microstructural examination of commercial ferritic alloys at 200 dpa, J. Nucl. Mater. 233-237:293-298.CrossRefADSGoogle Scholar
  13. Gerold, V., and Karnthaler, H. P., 1989, On the origin of planar slip in FCC alloys, Acta Met. 37(8):2177-213.CrossRefGoogle Scholar
  14. Grossbeck, M. L., Gibson, L. T., Jitsukawa, S., Mansur, L. K., and Turner, L. J., 1999, Irradiation creep at temperatures of 400°C and below for application to near-term fusion devices. 18th Int. Symp. on Effects of Radiation on Materials. Eds. R. K. Nanstad, M. L. Hamilton, F. A. Garner and A. S. Kumar, West Conshohocken, PA, American Society for Testing and Materials:725-741.Google Scholar
  15. Hashimoto, N., Zinkle, S. J., Rowcliffe, A. F., Robertson, J. P., and Jitsukawa, S., 2000, Deformation mechanisms in 316 stainless steel irradiated at 60°C and 330°C, J. Nucl. Mater. 283-287:528-534.CrossRefADSGoogle Scholar
  16. Hoelzer, D. T., Bentley, J., Sokolov, M. A., Miller, M. K., Odette, G. R., and Alinger, M. J., 2007, Influence of particle dispersions on the high-temperature strength of ferritic alloys, J. Nucl. Mater. 367-370:166-172.CrossRefADSGoogle Scholar
  17. Klueh, R. L., 2004, Reduced-activation bainitic and martensitic steels for nuclear fusion applications, Current Opinions in Solid State Materials Science 8:239-250.CrossRefGoogle Scholar
  18. Klueh, R. L., 2005, Elevated-temperature ferritic and martensitic steels and their application to future nuclear reactors, Int. Mater. Rev. 50(5):287-310.CrossRefGoogle Scholar
  19. Klueh, R. L., Hashimoto, N., and Masiasz, P. J., 2005, Development of new nano-particlestrengthened martensitic steels, Scripta Mater. 53(3):275-280.Google Scholar
  20. Klueh, R. L., Hashimoto, N., and Masiasz, P. J., 2007, New nano-particle-strengthened ferritic/martensitic steels by conventional thermo-mechanical treatment, J. Nucl. Mater. 367-370:48-53.CrossRefADSGoogle Scholar
  21. Klueh, R. L., and Harries, D. R., 2001, High-chromium Ferritic and Martensitic Steels for Nuclear Applications. West Conshohocken, PA, American Society for Testing and Materials.CrossRefGoogle Scholar
  22. Lee, H. J., Shim, J. H., and Wirth, B. D., 2007, Molecular dynamics simulation of screw dislocation interaction with stacking fault tetrahedron in face-centered cubic Cu, J. Mater. Res. 22(10):2758-2769.CrossRefADSGoogle Scholar
  23. Luft, A., 1991, Microstructural processes of plastic instabilities in strengthened metals, Progr. Mater. Sci. 35:97-204.CrossRefGoogle Scholar
  24. Majumdar, S., and Kalinin, G., 2000, ITER structural design criteria and their extension to advanced fusion reactor blankets, J. Nucl. Mater. 283-287:1424-1428.CrossRefADSGoogle Scholar
  25. Mansur, L. K., and Lee E. H., 1991, Theoretical basis for unified analysis of experimental data and design of swelling-resistant alloys, J. Nucl. Mater. 179-181:105-110.CrossRefADSGoogle Scholar
  26. Matsukawa, Y., Osetsky, Y. N., Stoller, R. E., and Zinkle, S. J., 2006, Destruction processes of large stacking fault tetrahedra induced by direct interaction with gliding dislocations, J. Nucl. Mater. 351:919-923.CrossRefGoogle Scholar
  27. Maziasz, P. J., 1993, Overview of microstructural evolution in neutron-irradiated austenitic stainless steels, J. Nucl. Mater. 205:118-145.CrossRefADSGoogle Scholar
  28. Miller, M. K., Russel, K. F., and Hoelzer, D. T., 2006, Characterization of precipitates in MA/ODS ferritic alloys, J. Nucl. Mater. 351:261-268.CrossRefADSGoogle Scholar
  29. Norgett, M. J., Robinson, M. T., and Torrens, I. M., 1975, A proposed method of calculating displacement dose rates, Nucl. Eng. Des. 33:50-54.CrossRefGoogle Scholar
  30. Odette, G. R., Yamamoto, T., and Rathbun, H. J., He, M.Y., Hribernik, M.L., and Rensman, J.W., 2003, Cleavage fracture and irradiation embrittlement of fusion reactor alloys: mechanisms, multiscale models, toughness measurements and implications to structural integrity assessment, J. Nucl. Mater. 323(2-3):313-340.CrossRefADSGoogle Scholar
  31. Okada, A., Kanao, K., Yoshiie, T., and Kojima, S., 1989, Transition of deformation structures in Ni and Au by D-T neutron irradiation, Mater. Trans. JIM 30(4):265-272.Google Scholar
  32. Osetsky, Y. N., Rodney, D., and Bacon, D. J., 2006, Atomic-scale study of dislocation - stacking fault tetrahedron interactions. Part I-mechanisms, Phil. Mag. 86(16):2295- 2313.CrossRefADSGoogle Scholar
  33. Rodney, D., 2005, Atomic scale modeing of clear band formation in FCC metals, Nucl. Instr. Meth. Phys. Res. B 228:100-110.CrossRefADSGoogle Scholar
  34. Rowcliffe, A. F., Zinkle, S. J., Stubbins, J. F., Edwards, D. J., and Alexander, D. J., 1998a, Austenitic Stainless Steels and High Strength Copper Alloys for Fusion Components, J. Nucl. Mater. 258-263:183-192.CrossRefADSGoogle Scholar
  35. Rowcliffe, A. F., Robertson, J. P., Klueh, R. L., Shiba, K., Alexander, D. J., Grossbeck, M. L., and Jitsukawa, S., 1998b, Fracture toughness and tensile behavior of ferriticmartensitic steels irradiated at low temperatures, J. Nucl. Mater. 258-263:1275-1279.CrossRefADSGoogle Scholar
  36. Schroeder, H., 1988, High temperature helium embrittlement in austenitic stainless steelsCorrelations between microstructure and mechanical properties, J. Nucl. Mater. 155-157:1031-1037.CrossRefADSGoogle Scholar
  37. Schroeder, H., and Ullmaier, H., 1991, Helium and hydrogen effects on the embrittlement of iron- and nickel-based alloys, J. Nucl. Mater. 179-181:118-124.CrossRefADSGoogle Scholar
  38. Singh, B. N., and Evans J. H., 1995, Significant differences in defect accumulation behaviour between fcc and bcc crystals under cascade damage conditions, J. Nucl. Mater. 226:277-285.CrossRefADSGoogle Scholar
  39. Singh, B. N., and Zinkle, S. J., 1993, Defect accumulation in pure fcc metals in the transient regime: a review, J. Nucl. Mater. 206:212-229.CrossRefADSGoogle Scholar
  40. Tavassoli, A. A. F., 2002, Present limits and improvements of structural materials for fusion reactors - a review, J. Nucl. Mater. 302:73-88.CrossRefADSGoogle Scholar
  41. Trinkaus, H., and Singh, B. N., 2003, Helium accumulation in metals during irradiationWhere do we stand? J. Nucl. Mater. 323(2-3):229-242.CrossRefADSGoogle Scholar
  42. Ukai, S., Nishida, T., Okuda, T., and Yoshitake, T., 1998, R&D of oxide dispersion strengthened ferritic/martensitic steels for LMFBR, J. Nucl. Mater. 258-263:1745-1749.CrossRefADSGoogle Scholar
  43. Ukai, S., and Fujiwara, M., 2002, Perspective of ODS alloys application in nuclear environments, J. Nucl. Mater. 307-311:749-757.CrossRefADSGoogle Scholar
  44. Ullmaier, H., 1984, The influence of helium on the bulk properties of fusion reactor structural materials, Nucl. Fus. 24(8):1039-1083.CrossRefGoogle Scholar
  45. Victoria, M., Baluc, N., Bailat, C., Dai, Y., Luppo, M. I., Schaüblin, R., and Singh, B. N., 2000, The microstructure and associated tensile properties of irradiated fcc and bcc metals J. Nucl. Mater. 276:114-122.CrossRefADSGoogle Scholar
  46. Wechsler, M. S., 1972, Dislocation channeling in irradiated and quenched metals, The Inhomogeneity of Plastic Deformation, R. E. Reed-Hill. Metals Park, OH, Am. Society for Metals: 19-54.Google Scholar
  47. Wigner, E. P., 1946, Theoretical physics in the metallurgical laboratory of Chicago, J. Appl. Phys. 17:857-863.CrossRefADSGoogle Scholar
  48. Yao, Z., Schäublin, R., and Victoria, M., 2003, Irradiation induced behavior of pure Ni single crystal irradiated with high energy protons, J. Nucl. Mater. 323(2-3):388-393.CrossRefADSGoogle Scholar
  49. Yamamoto, N., Murase, Y., Nagakawa, J., and Shiba, K., 2002, Creep behavior of reduced activation martensitic steel F82H injected with a large amount of helium, J. Nucl. Mater. 307-311:217-221.CrossRefADSGoogle Scholar
  50. Zinkle, S. J., 1999, Fundamental radiation effects parameters in metals and ceramics, Radiat. Eff. Defects Solid 148:447-477.CrossRefGoogle Scholar
  51. Zinkle, S. J., 2005a, Fusion materials science: Overview of challenges and recent progress, Phys. Plasmas 12(5):058-101.Google Scholar
  52. Zinkle, S. J., 2005b, Advanced Materials for Fusion Technology, Fusion Engineering and Design 74:31-40.CrossRefGoogle Scholar
  53. Zinkle, S. J., and Ghoniem, N. M., 2000, Operating temperature windows for fusion reactor structural materials, Fusion Engineering and Design 51-52:55-71.CrossRefGoogle Scholar
  54. Zinkle, S. J., Horsewell, A., Singh, B. N., and Sommer, W. F., 1994, Defect microstructure in copper alloys irradiated with 750 MeV protons, J. Nucl. Mater. 212-215:132-138.CrossRefADSGoogle Scholar
  55. Zinkle, S. J., and Lucas, G. E., 2003, Deformation and fracture mechanisms in irradiated FCC and BCC metals. Fusion Materials Semiann. Progress Report for Period ending June 30, 2003, DOE/ER-0313/34, Oak Ridge National Lab: 101-125.Google Scholar
  56. Zinkle, S. J., Matsui, H., Smith, D. L., Rowcliffe, A. F., van Osch, E., Abe, K., and Kazakov, V. A., 1998, Research and development on vanadium alloys for fusion applications, J. Nucl. Mater. 258-263:205-214.CrossRefADSGoogle Scholar
  57. Zinkle, S. J., and Matsukawa, Y., 2004, Observation and analysis of defect cluster production and interactions with dislocations, J. Nucl. Mater. 329-333:88-96.CrossRefADSGoogle Scholar
  58. Zinkle, S. J., Maziasz, P. J., and Stoller, R. E., 1993, Dose dependence of the microstructural evolution in neutron-irradiated austenitic stainless steel, J. Nucl. Mater. 206:266-286.CrossRefADSGoogle Scholar
  59. Zinkle, S. J., and Singh, B. N., 1993, Analysis of displacement damage and defect production under cascade damage conditions, J. Nucl. Mater. 199:173-191.CrossRefADSGoogle Scholar
  60. Zinkle, S. J., and Singh, B. N., 2000, Microstructure of Cu-Ni alloys neutron irradiated at 210°C and 420°C to 14 dpa, J. Nucl. Mater. 283-287:306-312.CrossRefADSGoogle Scholar
  61. Zinkle, S. J., and Snead, L. L., 1995, Microstructure of copper and nickel irradiated with fission neutrons near 230°C, J. Nucl. Mater. 225:123-131.CrossRefADSGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • S. J. Zinkle
    • 1
  1. 1.Materials Science and Technology DivisionOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations