Skip to main content

UWB RADAR Receiver Architecture

  • Chapter
Low Power Uwb Cmos Radar Sensors

Abstract

this chapter describes the operation of a radar system. The differences and advantages of using UWB signals in the radar system, over traditional narrow band signals, are discussed. The radar equation, usually defined for narrow band signals, is redefined for UWB signals. This new radar equation is used to analyze the echo signals from targets with basic shapes, resulting in an estimative of the echo signal amplitude as a function of the target distance. The architecture of an UWB radar based in the concept of sub-sampling is defined and the constituting blocks are described. The remaining of the chapter is concentrated in analyzing the receiver channel of the radar system. This analysis is centered around the noise power level in the receive path. From this analysis a new receiver circuit for baseband UWB signals is proposed. This new circuit is an averaging switched-integrator circuit. This circuit is described in detail and a design procedure is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Introduction to RADAR systems; Merrill I. Skolnik; McGraw-Hill; ISBN 0-07-066572-9

    Google Scholar 

  2. Gresham, I.; Jenkins, A.; Egri, R.; Eswarappa, C.; Kolak, F.; Wohlert, R.; Bennett, J.; Lanteri J.-P; Ultra wide band 24 GHz automotive radar front-end; 2003 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, 8–10 June 2003 Page(s):505–508

    Google Scholar 

  3. Gresham, I.; Jenkins, A.; Egri, R.; Eswarappa, C.; Kinayman, N.; Jain, N.; Anderson, R.; Kolak, F.; Wohlert, R.; Bawell, S.P.; Bennett, J.; Lanteri, J.-P.; Ultra-wideband radar sensors for short-range vehicular applications; IEEE Transactions on Microwave Theory and Techniques, Volume 52, Issue 9, Part 1, Sept. 2004 Page(s):2105–2122

    Article  Google Scholar 

  4. Kwo, W.C.; Huei, W.; Shreve, G.; Harrison, J.G.; Core, M.; Paxton, A.; Yu, M.; Chen, C.H.; Dow, G.S.; Forward-looking automotive radar using a W-band single-chip transceiver; IEEE Transactions on Microwave Theory and Techniques, Volume 43, Issue 7, Part 1–2, July 1995 Page(s):1659–1668

    Google Scholar 

  5. Woll, J.D.; VORAD collision warning radar; Record of the IEEE 1995 International Radar Conference, 1995., 8–11 May 1995 Page(s):369–372

    Google Scholar 

  6. Lowbridge, P.L.; Brigginshaw, P.M.; Kumar, B.; Millimetre wave technology for collision avoidance and cruise control; Eighth International Conference on Automotive Electronics, 1991., 28–31 Oct 1991 Page(s):150–154

    Google Scholar 

  7. Bennett, H.S.; Brederlow, R.; Costa, J.C.; Cottrell, P.E.; Huang, W.M.; Immorlica, A.A., Jr.; Mueller, J.-E.; Racanelli, M.; Shichijo, H.; Weitzel, C.E.; Bin Zhao; Device and technology evolution for Si-based RF integrated circuits; IEEE Transactions on Electron Devices, Volume 52, Issue 7, July 2005 Page(s):1235–1258

    Google Scholar 

  8. Morifuji, E.; Momose, H.S.; Ohguro, T.; Yoshitomi, T.; Kimijima, H.; Matsuoka, F.; Kinugawa, M.; Katsumata, Y.; Iwai, H.; Future perspective and scaling down roadmap for RF CMOS; 1999 Symposium on VLSI Technology, 1999. Digest of Technical Papers. 14-16 June 1999 Page(s):163 - 164

    Google Scholar 

  9. Turin, G.; An introduction to matched filters; IEEE Transactions on Information Theory, Volume 6, Issue 3, Jun. 1960 Page(s):311–329

    Google Scholar 

  10. Fowler, C.; Entzminger, J.; Corum, J.; Assessment of ultra-wideband (UWB) technology; IEEE Aerospace and Electronic Systems Magazine, Volume 5, Issue 11, Nov. 1990 Page(s):45–49

    Google Scholar 

  11. Harmuth, H.F.; Radar equation for nonsinusoidal waves; IEEE Transactions on Electromagnetic Compatibility, Volume 31, Issue 2, May 1989 Page(s):138–147

    Google Scholar 

  12. IEEE standard definitions of terms for antennas; IEEE Std 145-1983 22 June 1983

    Google Scholar 

  13. Crispin, J.W., Jr.; Maffett, A.L.; Radar cross-section estimation for simple shapes; Proceedings of the IEEE Volume 53, Issue 8, Aug. 1965 Page(s):833–848

    Google Scholar 

  14. Hestilow, T.J.; Simple formulas for the calculation of the average physical optics RCS of a cylinder and a flat plate over a symmetric window around broadside; IEEE Antennas and Propagation Magazine, Volume 42, Issue 5, Oct. 2000 Page(s):48–52

    Google Scholar 

  15. Colpitts, B.G.; Boiteau, G.; Harmonic radar transceiver design: miniature tags for insect tracking; IEEE Transactions on Antennas and Propagation, Volume 52, Issue 11, Nov. 2004 Page(s):2825–2832

    Google Scholar 

  16. Dybdal, R.B.; Radar cross-section measurements; Proceedings of the IEEE, Volume 75, Issue 4, April 1987 Page(s):498–516

    Google Scholar 

  17. Behzad Razavi; RF Microelectronics; Prentice Hall, ISBN 0-13-887571-5

    Google Scholar 

  18. A. Bruce Carlson; Communication Systems; McGraw Hill, ISBN 0-07-100560-9

    Google Scholar 

  19. Won Namgoong; Lerdworatawee, J.; Noise figure of digital communication receivers-revisited; IEEE Transactions on Circuits and Systems I, Volume 51, Issue 7, July 2004 Page(s):1330–1335

    Google Scholar 

  20. XYZs of oscilloscopes; Tektronix; Application Note

    Google Scholar 

  21. James D. Taylor and Thomas E. McEwan; The Micropower Impulse Radar; Chapter 6 of “Ultra-wideband Radar Technology”, Edited by James D Taylor; CRC Press; ISBN: 0849342678

    Google Scholar 

  22. Acharya, A.; Hurst, P.J.; Lewis, S.H.; Thermal noise from switches in a switched-capacitor gain stage; Southwest Symposium on Mixed-Signal Design, 2003. 23–25 Feb. 2003 Page(s):121–126

    Google Scholar 

  23. Lee, F.S.; Wentzloff, D.D.; Chandrakasan, A.P.; An ultra-wideband baseband front-end; Digest of Papers 2004 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, 6–8 June 2004 Page(s):493–496

    Google Scholar 

  24. Shelton, R.; Adkins, A.; Noise Bandwidth of Common Filters; IEEE Transactions on Communications, Volume 18, Issue 6, Dec. 1970 Page(s):828–830

    Google Scholar 

  25. Shaeffer, D.K.; Lee, T.H.; A 1.5-V, 1.5-GHz CMOS low noise amplifier; IEEE Journal of Solid-State Circuits, Volume 32, Issue 5, May 1997 Page(s):745–759

    Google Scholar 

  26. Ismail, A.; Abidi, A.A.; A 3-10-GHz low-noise amplifier with wideband LC-ladder matching network; IEEE Journal of Solid-State Circuits, Volume 39, Issue 12, Dec. 2004 Page(s):2269–227

    Google Scholar 

  27. Lerdworatawee, J.; Won Namgoong; Wide-band CMOS cascode low-noise amplifier design based on source degeneration topology; IEEE Transactions on Circuits and Systems I: Regular Papers, Volume 52, Issue 11, Nov. 2005 Page(s):2327–2334

    Google Scholar 

  28. Paulino, N.; Rebelo, H.; Pires, F.; Ventim Neves, I.; Goes, J.; Steiger-Garcao, A.; Design of a spiral-mode microstrip antenna and matching circuitry for ultra-wide-band receivers; IEEE International Symposium on Circuits and Systems, 2002. ISCAS 2002. Volume 3, 26–29 May 2002 Page(s):875–878

    Google Scholar 

  29. Heydari, P.; Lin, D.; A performance optimized CMOS distributed LNA for UWB receivers; Proceedings of the IEEE 2005 Custom Integrated Circuits Conference, 2005, 18–21 Sept. 2005 Page(s):330–333

    Google Scholar 

  30. Bruccoleri, F.; Klumperink, E.A.M.; Nauta, B.; Wide-band CMOS low-noise amplifier exploiting thermal noise canceling; IEEE Journal of Solid-State Circuits, Volume 39, Issue 2, Feb. 2004 Page(s):275–282

    Google Scholar 

  31. Scholten, A.J.; Tromp, H.J.; Tiemeijer, L.F.; Van Langevelde, R.; Havens, R.J.; De Vreede, P.W.H.; Roes, R.F.M.; Woerlee, P.H.; Montree, A.H.; Klaassen, D.B.M.; Accurate thermal noise model for deep-submicron CMOS; 1999. IEDM Technical Digest. International Electron Devices Meeting, 5–8 Dec. 1999 Page(s):155–158

    Google Scholar 

  32. Kwangseok Han; Kwyro Lee; Hyungcheol Shin; Thermal noise modeling for short-channel MOSFETs; International Conference on Simulation of Semiconductor Processes and Devices, 2003. SISPAD 2003. 3–5 Sept. 2003 Page(s):79–82.

    Google Scholar 

  33. Claasen, T.; Mecklenbrauker, W.; On stationary linear time-varying systems; IEEE Transactions on Circuits and Systems, Volume 29, Issue 3, Mar 1982 Page(s):169–184

    Google Scholar 

  34. Bastos, J.; Steyaert, M.; Sansen, W.; A high yield 12-bit 250-MS/s CMOS D/A converter; Proceedings of the IEEE 1996, Custom Integrated Circuits Conference, 1996. 5–8 May 1996 Page(s):431–434

    Google Scholar 

  35. Chi-Hung Lin; Bult, K.; A 10-b, 500-MSample/s CMOS DAC in 0.6 mm2; IEEE Journal of Solid-State Circuits, Volume 33, Issue 12, Dec. 1998 Page(s):1948–1958

    Google Scholar 

  36. Gilbert, B.; A precise four-quadrant multiplier with subnanosecond response; IEEE Journal of Solid-State Circuits, Volume 3, Issue 4, Dec. 1968 Page(s):365–373

    Google Scholar 

  37. Pelgrom, M.J.M.; Duinmaijer, A.C.J.; Welbers, A.P.G.; Matching properties of MOS transistors; IEEE Journal of Solid-State Circuits, Volume 24, Issue 5, Oct 1989 Page(s):1433–1439

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Paulino, N., Garção, A.S., Goes, J. (2008). UWB RADAR Receiver Architecture. In: Low Power Uwb Cmos Radar Sensors. Analog Circuits and Signal Processing. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8410-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-8410-2_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-8409-6

  • Online ISBN: 978-1-4020-8410-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics