The Role of Reactive Nitrogen Species (RNS) in the Activation of Nuclear Factor Kappa B (NFkB) and Its Implications for Biological Systems: The Question of Balance

  • Predrag S. Ljubuncic
  • Marina Bar-Shai
  • Abraham Z. Reznick

The members of redox-sensitive transcription factor nuclear kappa enhancer binding protein (NFkB) contain conserved REL-homology domain (RHD) responsible for DNA binding, dimerization, nuclear translocation as well as interaction with IkB inhibitory proteins. These inhibitory IkBs bind to NfkB and block its nuclear import and transcriptional activity. NFkB pathway plays a central role in the regulation of diverse cellular processes by regulating expression of target genes involved in inflammation, immunity and cell survival. The IKKβand IKKγ subunits of the IkB kinase (IKK) signalosome are required for the rapid NFkB canonical activation that leads to the IkB phosphorylation and its subsequent release from NFkB heterodimmers RelA/ p50 which is then translocated into the nucleus. In contrast, a subset of TNF family members function as biphasic activators of NFkB by activating canonical NFkB pathway as well as noncanoncial route of activation involving protein kinase NIK, phosphorylation of IKKB and the activation of RelB/p52 heterodimers. Nitrogen oxide (NO) and peroxynitrite (ONOO) are highly active reactive nitrogen species (RNS); at low concentrations (5–20μM), NO has been found to induce rapidly NFkB in the canonical activation pathway in L8 rat myoblasts. At high concentration (above 100μM), NO has been shown to have inhibitory effect on NFkB activation. The role of peroxynitrite remains contentious: Authentic peroxynitrite and its donors (5–100μM) are reported to activate NFkB in a noncanonical pathway in skeletal myocytes, for example by tyrosine nitration of IkBα on the expense of its serine phosphorylation and lack of degradation. This finally results in a prolonged nontransient activation of NFkB. Other works observed peroxynitrite induced inhibition of IKKα and concomitant phosphorylation of NFkB-inducing kinase (NIK) and IKKα in cardiac and endothelial cell lines, implying peroxynitrite may induce another noncanonical NFkB activation pathway via IKKα. Thus, this chapter summarizes results of studies concerning the role of RNS and RNS-generating compounds in NFkB signaling. The use of the different experimental models and cell types and the effects of exposure time, RNS concentrations and availability (extracellular vs. intracellular) as well as the significance of the redox state of the cells in the process of NFkB activation, are discussed and the implications for biological systems are also presented.

Keywords

NFkB nitric oxide peroxynitrite nitrosylation nitration oxidation disease 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe J, Berk B.C. Reactive oxygen species as mediators of signal transduction in cardiovascular disease. Trends Cardiovasc Med 8: 59–64, 1998.CrossRefGoogle Scholar
  2. Adams J, Palombella VJ, Elliott PJ. Proteasome inhibition: a new strategy in cancer treatment. Invest New Drugs 18: 109–121, 2000.PubMedCrossRefGoogle Scholar
  3. Adewuya O, Irie Y, Bian K, Onigu-Otite E, Murad F. Mechanism of vasculitis and aneurysms in Kawasaki disease: role of nitric oxide. Nitric Oxide 8: 15–25, 2003.PubMedCrossRefGoogle Scholar
  4. Aggarwal BB. Nuclear factor-kappaB: the enemy within. Cancer Cell 6: 203–208, 2004.PubMedCrossRefGoogle Scholar
  5. Akhand AA, Pu M, Senga T, Kato M, Suzuki H, Miyata T, Hamaguchi M, Nakashima I. Nitric oxide controls Src kinase activity through a sulfhydryl group modification-mediated Tyr-527-independent and Tyr-416-linked mechanism. J Biol Chem 274: 25821–25826, 1999.PubMedCrossRefGoogle Scholar
  6. Anderson ME. Glutathione: an overview of biosynthesis and modulation. Chem Biol Interact 112: 1–14, 1998.CrossRefGoogle Scholar
  7. Anest V, Hanson JL, Cogswell PC, Steinbrecher KA, Strahl BD, Baldwin AS. A nucleosomal function for IkappaB kinase-alpha in NF-kappaB-dependent gene expression. Nature 423: 659–663, 2003.PubMedCrossRefGoogle Scholar
  8. Bakker TR, Reed D, Renno T, Jongeneel CV. Efficient adenoviral transfer of NF-kappaB inhibitor sensitizes melanoma to tumor necrosis factor-mediated apoptosis. Int J Cancer 80: 320–323, 1999.PubMedCrossRefGoogle Scholar
  9. Baldwin A. Series introduction: the transcription factor NF-kappaB and human disease. J Clin Inv 107: 3–6, 2001a.CrossRefGoogle Scholar
  10. Baldwin, A. Control of oncogenesis and cancer therapy resistance by the transcription factor NF-kappaB. J Clin Inv 107: 241–246, 2001b.CrossRefGoogle Scholar
  11. Baran CP, Zeigler MM, Tridandapani S, Marsh CB. The role of ROS and RNS in regulating life and death of blood monocytes. Curr Pharm Des 10: 855–866, 2004.PubMedCrossRefGoogle Scholar
  12. Barkett M. Gilmore TD. Control of apoptosis by Rel/NF-kappaB transcription factors. Oncogene 18: 6910–6924, 1999.PubMedCrossRefGoogle Scholar
  13. Bar-Shai M, Reznick AZ. Peroxynitrite induces an alternative Nf-kB activation pathway in L8 rat myoblasts. Antioxid Redox Signal 8: 639–652, 2006a.PubMedCrossRefGoogle Scholar
  14. Bar-Shai M, Reznick AZ. Reactive nitrogen species induce nuclear factor-kappaB-mediated protein degradation in skeletal muscle cells. Free Radic Biol Med 40: 2112–2125, 2006b.PubMedCrossRefGoogle Scholar
  15. Bar-Shai M, Carmeli E, Coleman R, Rozen N, Perek S, Fuchs D, Reznick AZ. The effect of hindlimb immobilization on acid phosphatase, metalloproteinases and nuclear factor-kappaB in muscles of young and old rats. Mech Ageing Dev 126: 289–297, 2005a.PubMedCrossRefGoogle Scholar
  16. Bar-Shai M, Carmeli E, Reznick AZ. The role of NF-kappaB in protein breakdown in immobilization, aging, and exercise: from basic processes to promotion of health. Ann N Y Acad Sci 1057: 431–447, 2005b.PubMedCrossRefGoogle Scholar
  17. Bar-Shai M, Carmeli E, Ljubuncic P, Reznick A. Exercise and immobilization in aging animals: the involvement of oxidative stress and NF-kB activation. Free Radic Biol Med 44(2): 202–214, 2008.PubMedCrossRefGoogle Scholar
  18. Beal MF. Oxidatively modified proteins in aging and disease. Free Radic Biol Med 32: 797–803, 2002.PubMedCrossRefGoogle Scholar
  19. Beckman JS, Koppenol WH. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol 271: C1424–C1437, 1996.PubMedGoogle Scholar
  20. Beraud C, Henzel WJ, Baeuerle PA. Involvement of regulatory and catalytic subunits of phosphoinositide 3-kinase in NF-kappaB activation. Proc Natl Acad Sci USA 96: 429–434, 1999.PubMedCrossRefGoogle Scholar
  21. Bergendi L, Benes L, Durackova Z, Ferencik M. Chemistry, physiology and pathology of free radicals. Life Sci 65: 1865–1874, 1999.PubMedCrossRefGoogle Scholar
  22. Betteridge DJ. What is oxidative stress? Metab Clin Exp 49: 3–8, 2000.PubMedGoogle Scholar
  23. Bian K, Murad F. Diversity of endotoxin-induced nitrotyrosine formation in macrophage-endothelium-rich organs. Free Radic Biol Med 31: 421–429, 2001.PubMedCrossRefGoogle Scholar
  24. Bian K, Ke Y, Kamisaki Y, Murad F. Proteomic modification by nitric oxide. J Pharmacol Sci 101: 271–279, 2006.PubMedCrossRefGoogle Scholar
  25. Bing L, Zhang Z, Wu Y, Kang J, Pei G. β-Arrestin2 Arrestin2 functions as a phosphorylation- regulated suppressor of UV-induced NF-kB activation. EMBO J 24: 4237–4246, 2005.CrossRefGoogle Scholar
  26. Birbach A, Gold P, Binder BR, Hofer E, de Martin R, Schmid JA. Signaling molecules of the NF-kappa B pathway shuttle constitutively between cytoplasm and nucleus. J Biol Chem 277: 10842–10851, 2002.PubMedCrossRefGoogle Scholar
  27. Bonizzi G, Karin M. The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends Immunol 25: 280–288, 2004.PubMedCrossRefGoogle Scholar
  28. Bottero V, Rossi F, Samson M, Mari M, Hofman P, Peyron JF. IkB-α, the NF-kB inhibitory subunit, interacts with ANT, the mitochondrial ATP/ADP translocator. J Biol Chem 276: 21317–21324, 2001.PubMedCrossRefGoogle Scholar
  29. Brito C, Naviliat M, Tiscornia AC, Vuillier F, Gualco G, Dighiero G, Radi R, Cayota AM. Peroxynitrite inhibits T lymphocyte activation and proliferation by promoting impairment of tyrosine phosphorylation and peroxynitrite-driven apoptotic death. J Immunol 162: 3356–3366, 1999.PubMedGoogle Scholar
  30. Brookes P, Darley-Usmar VM. The mitochondrial NO-signaling pathway, and the transduction of nitrosative to oxidative cell signals: an alternative function for cytochrome C oxidase. Free Radic Biol Med 32: 370–374, 2002.PubMedCrossRefGoogle Scholar
  31. Brookes PS, Levonen AL, Shiva S, Sarti P, Darley-Usmar VM. Mitochondria: regulators of signal transduction by reactive oxygen and nitrogen species. Free Radic Biol Med 33: 755–764, 2002.PubMedCrossRefGoogle Scholar
  32. Brown M, Ross TP, Holloszy JO. Effects of ageing and exercise on soleus and extensor digitorum longus muscles of female rats. Mech Ageing Dev 63: 69–77, 1992.PubMedCrossRefGoogle Scholar
  33. Burdon RH. Superoxide and hydrogen peroxide in relation to mammalian cell proliferation. Free Radic Biol Med 1995 Apr; 18(4): 775–794. Review.PubMedCrossRefGoogle Scholar
  34. Cao Y, Bonizzi G, Seagroves TN, Greten FR, Johnson R, Schmidt EV, Karin M. IKKalpha provides an essential link between RANK signaling and cyclin D1 expression during mammary gland development. Cell 107: 763–775, 2001.PubMedCrossRefGoogle Scholar
  35. Carlotti F, Dower SK, Qwarnstrom EE. Dynamic shuttling of nuclear factor kB between the nucleus and cytoplasm as a consequence of inhibitor dissociation. J Biol Chem 275: 41028–41034, 2000.PubMedCrossRefGoogle Scholar
  36. Carmeli E, Haimovitch TG. The expression of MMP-2 following immobilization and high-intensity running in plantaris muscle fiber in rats. Sci World J 6: 542–550, 2006.Google Scholar
  37. Carmeli E, Coleman R, Reznick AZ. The biochemistry of aging muscle. Exp Gerontol 37: 477–489, 2002.PubMedCrossRefGoogle Scholar
  38. Carmeli E, Haimovitch TG, Nemcovsky CE. Expression of matrix metalloproteinase 2 and heat shock protein-72 in immobilized muscle in rats. J Musculoskel Neuronal Interact 6: 96–102, 2006.Google Scholar
  39. Celec P. Nuclear factor kappa B- molecular biomedicine: the next generation. Biomed Pharmacoth 58: 365–371, 2004.CrossRefGoogle Scholar
  40. Chandel NS, Schumacker PT, Arch RH. Reactive oxygen species are downstream products of TRAF-mediated signal transduction. J Biol Chem 276: 42728–42736, 2001.PubMedCrossRefGoogle Scholar
  41. Chen L, Parent T, Maniatis T. Site-specific phosphorylation of IkappaBalpha by a novel ubiquitination-dependent protein kinase activity. Cell 84: 853–862, 1996.PubMedCrossRefGoogle Scholar
  42. Chen Z, Hagler J, Palombella VJ, Melandri F, Scherer D, Ballard D, Maniatis T. Signal-induced site-specific phosphorylation targets IkBα to the ubiquitin-proteasome pathway. Genes Dev 9: 1586–1597, 1995.PubMedCrossRefGoogle Scholar
  43. Chen ZJ. Ubiquitin signalling in the NF-kappaB pathway. Nat Cell Biol 7: 758–765, 2005.PubMedCrossRefGoogle Scholar
  44. Cho S, Urata Y, Iida T, Goto S, Yamaguchi M, Sumikawa K, Kondo T. Glutathione downregulates the phosphorylation of I kappa B: autoloop regulation of the NF-kappa B-mediated expression of NF-kappa B subunits by TNF-alpha in mouse vascular endothelial cells. Biochem Biophys Res Commun 253: 104–108, 1998.PubMedCrossRefGoogle Scholar
  45. Chung JY, Park YC, Ye H, Wu H. All TRAFs are not created equal: common and distinct molecular mechanisms of TRAF-mediated signal transduction. J Cell Sci 115: 679–688, 2002.PubMedGoogle Scholar
  46. Ckless K, Reynaert NL, Taatjes DJ, Lounsbury KM, van der Vliet A, Janssen-Heininger Y. In situ detection and visualization of S-nitrosylated proteins following chemical derivatization: identification of Ran GTPase as a target for S-nitrosylation. Nitric Oxide 11: 216–227, 2004.PubMedCrossRefGoogle Scholar
  47. Clement MV, Pervaiz S. Reactive oxygen intermediates regulate cellular response to apoptotic stimuli: a hypothesis. Free Radic Res 30: 247–252, 1999.PubMedCrossRefGoogle Scholar
  48. Cogswell PC, Kashatus DF, Keifer JA, Guttridge DC, Reuther JY, Bristow C, Roy S, Nicholson DW, Baldwin AS Jr. NF-kB and IkB-α are found in the mitochondria. Evidence for regulation of mitochondrial gene expression by NF-kB. J Biol Chem 278: 2963–2968, 2003.PubMedCrossRefGoogle Scholar
  49. Cos P, Ying L, Calomme M, Hu JP, Cimanga K, Van Poel B, Pieters L, Vlietinck AJ, Berghe DV. Structure-activity relationship and classification of flavonoids as inhibitors of xanthine oxidase and superoxide scavengers. J Nat Prod 61: 71–76, 1998.PubMedCrossRefGoogle Scholar
  50. Cotgreave IA, Gerdes RG. Recent trends in glutathione biochemistry - Glutathione-protein interactions: A molecular link between oxidative stress and cell proliferation? Biochem Biophys Res Commun 242: 1–9, 1998.PubMedCrossRefGoogle Scholar
  51. Crow JP. Peroxynitrite scavenging by metalloporphyrins and thiolates. Free Radic Biol Med 28: 1487–1494, 2000.PubMedCrossRefGoogle Scholar
  52. Curtois G, Gilmore TD. Mutations in the NF-kappaB signaling pathway: implications for human disease. Oncogene 25: 6831–6843, 2006.CrossRefGoogle Scholar
  53. Curtois G, Smahi A. NF-kappaB-related genetic diseases. Cell Death Differ 13: 843–851, 2006.CrossRefGoogle Scholar
  54. D’Acquisto F, Ialenti A, Ianaro A, Di Vaio R, Carnuccio R. Local administration of transcription factor decoy oligonucleotides to nuclear factor-kappaB prevents carrageenin-induced inflammation in rat hind paw. Gene Ther 7: 1731–1737, 2000.PubMedCrossRefGoogle Scholar
  55. D’Acquisto F, May MJ, Ghosh S. Inhibition of nuclear factor kappa B (NF-kB): an emerging theme in anti-inflammatory therapies. Mol Interv 2: 22–35, 2002.PubMedCrossRefGoogle Scholar
  56. De la Torre A, Schroeder RA, Bartlett ST, Kuo PC. Differential effects of nitric oxide-mediated S-nitrosylation on p50 and c-jun DNA binding. Surgery 124: 137–141, 1998.Google Scholar
  57. de Martin R, Vanhove B, Cheng Q, Hofer E, Csizmadia V, Winkler, Bach FH. Cytokine-inducible expression in endothelial cells of an I kappa B alpha-like gene is regulated by NF kappa B. EMBO J 12: 2773–2779, 1993.PubMedGoogle Scholar
  58. Deng, L, Wang C, Spencer E, Yang L, Braun A, You J, Slaughter C, Pickart C, Chen ZJ. Activation of the IkB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103: 351–361, 2000.PubMedCrossRefGoogle Scholar
  59. Di Stasi AMM, Mallozzi C, Macchia G, Petrucci TC, Minetti M. Peroxynitrite induces tyrosine nitration and modulates tyrosine phosphorylation of synaptic proteins. J Neurochem 73: 727–735, 1999.PubMedCrossRefGoogle Scholar
  60. DiDonato JA, Hayakawa M, Rothwarf DM, Zandi E, Karin M. A cytokine-responsive IkappaB kinase that activates the transcription factor NF-kappa B. Nature 388: 548–554, 1997.PubMedCrossRefGoogle Scholar
  61. Drew B and Leeuwenburgh C. Aging and the role of reactive nitrogen species. Ann NY Acad Sci 959: 66–81, 2002.PubMedGoogle Scholar
  62. Droge W. Free radicals in the physiological control of cell function. Physiol Rev 82: 47–95, 2002.PubMedGoogle Scholar
  63. Ducut Sigala JL, Bottero V, Young DB, Shevchenko A, Mercurio F, Verma IM. Activation of transcription factor NF-kappaB requires ELKS, an IkappaB kinase regulatory subunit. Science 304: 1963–1967, 2004.PubMedCrossRefGoogle Scholar
  64. Eu JP, Liu L, Zeng M, Stamler J. An apoptotic model for nitrosative stress. Biochemistry 39: 1040–1047, 2000.PubMedCrossRefGoogle Scholar
  65. Fan C, Li Q, Ross D, Engelhardt JF. Tyrosine phosphorylation of I kappa B alpha activates NF kappa B through a redox-regulated and c-Src-dependent mechanism following hypoxia/reoxygenation. J Biol Chem 278: 2072–2080, 2003.PubMedCrossRefGoogle Scholar
  66. Fielden EM, Roberts PB, Bray RC, Lowe DJ, Mautner GN, Rotilio G, Calabrese L. The mechanism of action of superoxide dismutase from pulse radiolysis and electron paramagnetic resonance. Biochem J 139: 49–60, 1974.PubMedGoogle Scholar
  67. Filomeni G, Rotilio G, Ciriolo MR. Cell signaling and the glutathione redox system. Biochem Pharmacol 64: 1057–1064, 2002.PubMedCrossRefGoogle Scholar
  68. Forman HJ, Torres M. Reactive oxygen species and cell signaling: respiratory burst in macrophage signaling. Am J Respir Cri Care Med 166: S4–S8, 2002.CrossRefGoogle Scholar
  69. Freeman BA, Crapo JD. Biology of disease. Free radicals and tissue injury. Lab Investig 47: 412–426, 1982.PubMedGoogle Scholar
  70. Frelin C, Imbert V, Griessinger E, Peyron AC, Rochet N, Philip P, Dageville C, Sirvent A, Hummelsberger M, Berard E, Dreano M, Sirvent N, Peyron JF. Targeting NF-kB activation via pharmacologic inhibition of IKK2-induced apoptosis of human acute myeloid leukemia cells. Blood 105: 804–811, 2005.PubMedCrossRefGoogle Scholar
  71. Fridovich I. The biology of oxygen radicals. Science 201: 875–880, 1978.PubMedCrossRefGoogle Scholar
  72. Fugere NA, Ferrington DA, Thompson LV. Protein nitration with aging in the rat semimembranosus and soleus muscles. J Gerontol 61: 806–812, 2006.Google Scholar
  73. Fuji H, Ichimori, K., Hoshiai, K., Nakazawa, H. Nitric oxide inactivates NADPH oxidase in pig neutrophils by inhibiting its assembling process. J Biol Chem 272: 32773–32778, 1997.CrossRefGoogle Scholar
  74. Gaston B. Nitric oxide and thiol groups. Biochim Biophys Acta 1411: 323–333, 1999.PubMedCrossRefGoogle Scholar
  75. Ghosh S, May MJ, Kopp EB. NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol 16: 225–260, 1998.PubMedCrossRefGoogle Scholar
  76. Ghosh S, Karin M. Missing pieces in the NF-kappaB puzzle. Cell 109: 81–96, 2002.CrossRefGoogle Scholar
  77. Gilmore T, Gapuzan ME, Kalaitzidis D, Starczynowski D. Rel / NFkappa B / I kappa B signal transduction in the generation and treatment of human cancer. Cancer Lett 181: 1–9, 2002.PubMedCrossRefGoogle Scholar
  78. Gow AJ, Duran D, Malcolm S, Ischiropoulos H. Effects of peroxynitrite-induced protein modifications on tyrosine phosphorylation and degradation. FEBS Lett 385: 63–66, 1996.PubMedCrossRefGoogle Scholar
  79. Gow AJ. The biological chemistry of nitric oxide as it pertains to the extrapulmonary effects of inhaled nitric oxide Proc Am Thorac Soc 3: 150–152, 2006.PubMedCrossRefGoogle Scholar
  80. Green RM, Graham M, O’Donovan MR, Chipman JK, Hodges NJ. Subcellular compartmentalization of glutathione: correlations with parameters of oxidative stress related to genotoxicity. Mutagenesis 21: 383–90, 2006.PubMedCrossRefGoogle Scholar
  81. Greten FR, Karin M. The IKK/NF-kappaB activation pathway - a target for prevention and treatment of cancer. Cancer Lett 206: 193–199, 2004.PubMedCrossRefGoogle Scholar
  82. Guseva NV, Taghiyev AF, Sturm MT, Rokhlin OW, Cohen M.B. Tumor necrosis factor-related apoptosis-inducing ligand-mediated activation of mitochondria-associated nuclear factor-kB in prostatic carcinoma cell lines Mol Cancer Res 2: 574–584, 2004.PubMedGoogle Scholar
  83. Guttridge DC, Albanese C, Reuther JY, Pestell RG, Baldwin ASJ. NF-kappaB controls cell growth and differentiation through transcriptional regulation of cyclin D1. Mol Cell Biol 19: 5785–5799, 1999.PubMedGoogle Scholar
  84. Häcker H, Karin M. Regulation and function of IKK and IKKrelated kinases. Sci. STKE 2006, re13.Google Scholar
  85. Haddad JJ, Lauterbach R, Saade’ NE, Safieh-Garabedian B, Land SC. α-Melanocyte-related tripeptide, Lys-D-Pro-Val, ameliorates endotoxin-induced nuclear factor-kB translocation and activation: evidence for involvement of an interleukin-1β receptor antagonism in the alveolar epithelium. Biochem J 355: 29–38, 2001.PubMedCrossRefGoogle Scholar
  86. Haddad JJ. Antioxidant and prooxidant mechanisms in the regulation of redox(y)-sensitive transcription factors. Cell Signal 14: 879–897, 2002.PubMedCrossRefGoogle Scholar
  87. Hall AG. Glutathione and the regulation of cell death. Adv Exp Med Bio 457: 199–203, 1999.Google Scholar
  88. Halliwell B. Reactive oxygen species in living systems: source, biochemistry, and role in human disease. Am J Med 91; Supplement 3C: 14s–22s, 1991.PubMedCrossRefGoogle Scholar
  89. Halliwell B. Antioxidant defence mechanisms: From the beginning to the end (of the beginning). Free Radic Res 31: 261–272, 1999.PubMedCrossRefGoogle Scholar
  90. Han Y, Weinman S, Boldogh I, Walker RK, Brasier AR. Tumor necrosis factor-α-inducible IkBα proteolysis mediated by cytosolic m-calpain. A mechanism parallel to the ubiquitin-proteasome pathway for nuclear factor-kB activation. J Biol Chem 274: 787–794, 1999.PubMedCrossRefGoogle Scholar
  91. Harman D. Aging: A theory based on free radical and radiation chemistry. J Gerontol 11: 298–300, 1956.PubMedGoogle Scholar
  92. Hattori Y, Kasai K, Gross, SS. NO suppresses while peroxynitrite sustains NF-kB: a paradigm to rationalize cytoprotective and cytotoxic actions attributed to NO. Cardiovasc Res 63: 31–40, 2004.PubMedCrossRefGoogle Scholar
  93. Hayden MS, Ghosh S. Signaling to NF-kappaB. Genes Dev 18: 2195–2224, 2004.PubMedCrossRefGoogle Scholar
  94. Hayes JD, McLellan LI. Glutathione and glutathione-dependent enzymes represent a coordinately regulated defense against oxidative stress. Free Radic Res 31: 273–300, 1999.PubMedCrossRefGoogle Scholar
  95. He JQ, Saha SK, Kang JR, Zarnegar B, Cheng G. Specificity of TRAF3 in its negative regulation of the noncanonical NF-kappa B pathway. J Biol Chem 282: 3688–3694, 2007.PubMedCrossRefGoogle Scholar
  96. Hickman-Davis JM, Fang FC, Nathan C, Shepherd VL, Voelker DR, Wright JR. Lung surfactant and reactive oxygen-nitrogen species: antimicrobial activity and host-pathogen interactions. Am J Physiol Lung Cell Mol Physiol 281: L517–L523, 2001.PubMedGoogle Scholar
  97. Higuchi M, Cartier LJ, Chen M, Holluszy JO. Superoxide dismutase and catalase in skeleteal muscle: Adaptive response to exercise. J Gerontol 40: 281–286, 1985.PubMedGoogle Scholar
  98. Ho RC, Hirshman MF, Li Y, Cai D, Farmer JR, Aschenbach WG, Witczak CA, Shoelson SE, Goodyear LJ. Regulation of IkappaB kinase and NF-kappaB in contracting adult rat skeletal muscle. Am J Physiol Cell Physiol 289: C794–801, 2005.PubMedCrossRefGoogle Scholar
  99. Holmes-McNary M, Baldwin AS Jr. Chemopreventive properties of trans-resveratrol are associated with inhibition of activation of the Ikappa B kinase. Cancer Res 2000 Jul 1; 60(13):3477–3483.PubMedGoogle Scholar
  100. Hood DA, Irrcher I, Ljubicic V, Joseph AM. Coordination of metabolic plasticity in skeletal muscle. J Exp Biol 209: 2265–2275, 2006.PubMedCrossRefGoogle Scholar
  101. Huang P, Feng L, Oldham EA, Keating MJ, Plunkett W. Superoxide dismutase as a target for the selective killing of cancer cells. Nature 407: 390–395, 2000a.PubMedCrossRefGoogle Scholar
  102. Huang T, Kudo N, Yoshida M, Miyamoto S. A nuclear export signal in the N-terminal regulatory domain of IkappaBalpha controls cytoplasmic localization of inactive NF-kappaB/IkappaBalpha complexes. Proc Natl Acad Sci USA 97: 1014–1019, 2000b.PubMedCrossRefGoogle Scholar
  103. Hunter RB, Stevenson E, Koncarevic A, Mitchell-Felton H, Essig DA, Kandarian SC. Activation of an alternative NF-kappaB pathway in skeletal muscle during disuse atrophy. FASEB J 16: 529–538, 2002.PubMedCrossRefGoogle Scholar
  104. Hutter D, Greene JJ. Influence of the cellular redox state on NF-kappaB-regulated gene expression. J Cell Physiol 183: 45–52, 2000.PubMedCrossRefGoogle Scholar
  105. Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA 84: 9265–9269, 1987.PubMedCrossRefGoogle Scholar
  106. Ignarro LJ, Buga GM, Wei LH, Bauer PM, Wu G, del Soldato P. Role of the arginine-nitric oxide pathway in the regulation of vascular smooth muscle cell proliferation. Proc Natl Acad Sci USA 98: 4202–4208, 2001.PubMedCrossRefGoogle Scholar
  107. Imbert V, Rupec RA, Livolsi A, Pahl HL, Traenckner EB, Mueller-Dieckmann C, Farahifar D, Rossi B, Auberger P, Baeuerle PA, Peyron JF. Tyrosine phosphorylation of I kappa B-alpha activates NF-kappa B without proteolytic degradation of I kappa B-alpha. Cell 86: 787–798, 1996.PubMedCrossRefGoogle Scholar
  108. Ischiropoulos H. Biological tyrosine nitration: a pathophysiological function of nitric oxide and reactive oxygen species. Arch Biochem Biophys 356: 1–11, 1998.PubMedCrossRefGoogle Scholar
  109. Jackman RW, Kandarian SC. The molecular basis of skeletal muscle atrophy. Am J Physiol Cell Physiol 287: C834–C843, 2004.PubMedCrossRefGoogle Scholar
  110. Janssen-Heininger YM, Macara I, Mossman BT. Cooperativity between oxidants and tumor necrosis factor in the activation of nuclear factor (NF)-kB; requirement of Ras/Mitogen-Activated Protein Kinases in the activation of NF-kB by oxidants Am J Respir Cell Mol Biol 20: 942–952, 1999.PubMedGoogle Scholar
  111. Janssen-Heininger YM, Pointer ME, Baeuerle PA. Recent advances towards understanding redox mechanisms in the activation of nuclear factor kappaB. Free Radic Biol Med 28: 1317–1327, 2000.PubMedCrossRefGoogle Scholar
  112. Janssen-Heininger YM, Persinger RL, Korn SH, Pantano C, McElhinney B, Reynaert NL, Langen RCJ, Ckless K, Shrivastava P, Poynter ME. Reactive nitrogen species and cell signaling. Implications for death or survival of lung epithelium. Am J Respir Crit Care Med 166: S9–S16, 2002.PubMedCrossRefGoogle Scholar
  113. Ji LL, Gomez-Cabrera MC, Steinhafel N, Vina J. Acute exercise activates nuclear factor (NF)-kappaB signaling pathway in rat skeletal muscle. FASEB J 18: 1499–1506, 2004.PubMedCrossRefGoogle Scholar
  114. Ji LL, Gomez-Cabrera MC, Vina J. Exercise and hormesis: activation of cellular signaling pathway. Ann NY Acad Sci 1067: 425–435, 2006.PubMedCrossRefGoogle Scholar
  115. Ji LL. Modulation of skeletal muscle antioxidant defense by exercise: role of redoks signaling. Free Radic Biol Med. 2008 Jan 15; 44(2):142–152. Epub 2007 Mar 12.PubMedCrossRefGoogle Scholar
  116. Jobin C, Sartor RB. The I kappa B/NF-kappa B system: a key determinant of mucosal inflammation and protection. Am J Physiol Cell Physiol 278: C451–462, 2000.PubMedGoogle Scholar
  117. Karin M, Ben-Neriah Y. Phosphorylation meets ubiquitination: The control of NF-kappaB activity. Annu Rev Immunol 18: 621–663, 2000.PubMedCrossRefGoogle Scholar
  118. Karin M, Delhase M. The I kappa B kinase (IKK) and NF-kappa B: key elements of proinflammatory signalling. Semin Immunol 12: 85–98, 2000.PubMedCrossRefGoogle Scholar
  119. Karin M, Yamamoto Y, Wang QM. The IKK NF-kappa B system: a treasure trove for drug development. Nat Rev Drug Discov 3: 17–26, 2004.PubMedCrossRefGoogle Scholar
  120. Kato T, Delhase M, Hoffmann A, Karin M. CK2 is a C-terminal IkB inase responsible for NF-kB activation during the UV response. Mol Cell 12: 829–839, 2003.PubMedCrossRefGoogle Scholar
  121. Katsuyama K, Shichiri M, Marumo F, Hirata Y. NO inhibits cytokine-induced iNOS expression and NF-kappaB activation by interfering with phosphorylation and degradation of IkappaB-alpha. Arterioscler Thromb Vasc Biol 18: 1796–1802, 1998.PubMedGoogle Scholar
  122. Kim HY. Ginsenoside RgI stimulates nitric oxide release in pulmonary artery endothelial cells in culture. J Biochem Mol Biol 28: 301–305, 1995.Google Scholar
  123. Klotz LO, Schroeder P, Sies H. Peroxynitrite signaling: receptor tyrosine kinases and activation of stress-responsive pathways. Free Radic Biol Med 33: 737–743, 2002.PubMedCrossRefGoogle Scholar
  124. Kluge I, Gutteck-Amsler U, Zollinger M, Do KQ. SNitrosoglutathione in rat cerebellum: Identification and quantification by liquid chromatography-mass spectrometry. J Neurochem 69: 2599–2607, 1997.PubMedCrossRefGoogle Scholar
  125. Kong SK, Yim MB, Stadtman ER, Chock PB. Peroxynitrite disables the tyrosine phosphorylation regulatory mechanism: lymphocyte-specific tyrosine kinase fails to phosphorylate nitrated cdc2(6–20) NH2 peptide. Proc Natl Acad Sci USA 93: 3377–3381, 1996.PubMedCrossRefGoogle Scholar
  126. Koong AC, Chen EY, Giaccia AJ. Hypoxia causes the activation of Nuclear factor-kB through the phosphorylation of IkBα on tyrosine residues. Cancer Res 54: 1425–1430, 1994.PubMedGoogle Scholar
  127. Koppenol WH. The basic chemistry of nitrogen monoxide and peroxynitrite. Free Radic Biol Med 25: 385–391, 1998.PubMedCrossRefGoogle Scholar
  128. Kosower NS, Kosower EM. The glutathione status of cells. Intl Rev Cytology 54: 109–156, 1978.CrossRefGoogle Scholar
  129. Kregl KC, Zhang HJ. An integrated view of oxidative stress in aging: basic mechanisms, functional effects, and pathological considerations. Am J Physiol Regul Integr Comp Physiol 292: R18–R36, 2007.Google Scholar
  130. Kumar A, Takada Y, Boriek AM, Aggarwal BB. Nuclear factor-kB: its role in health and disease. J Mol Med 82: 434–448, 2004.PubMedCrossRefGoogle Scholar
  131. Lancaster JR. R. Simulation of the diffusion and reaction of endogenously produced nitric oxide. Proc Natl Acad Sci USA 91: 8137–8141, 1994.PubMedCrossRefGoogle Scholar
  132. Lander HM, Hajjar DP, Hempstead BL, Mirza UA, Chait BT, Campbell S, Quilliam LA. A molecular redox switch on p21(ras). Structural basis for the nitric oxide-p21(ras) interaction. J Biol Chem 272: 4323–4326, 1997.PubMedCrossRefGoogle Scholar
  133. Landis GN, Tower J. Superoxide dismutase evolution and life span regulation. Mech Ageing Dev 126: 365–379, 2005.PubMedCrossRefGoogle Scholar
  134. Lawler JM, Powers SK, Visser T, Van Dijk H, Kordus MJ, Ji LL. Acute exercise and skeletal muscle antioxidant and metabolic enzymes: effect of fiber type and age. Am J. Physiol 265: R1344–R1350, 1993.PubMedGoogle Scholar
  135. Leeuwenburgh C, Feibig R, Chandwaney R, Ji LL. Aging and exercise training in skeletal muscle: responses of glutathione and antioxidant enzymes. Am J Physiol 267: R439–R445, 1994.PubMedGoogle Scholar
  136. Leeuwenburgh C, Hardy MM, Hazen SL, Wagner P, Hurley JV, Morrison WA. Reactive nitrogen intermediates promote low density lipoprotein oxidation in human atherosclerotic intima. J Biol Chem 272: 1433–1436, 1997.PubMedCrossRefGoogle Scholar
  137. Leiro J, Alvarez E, Arranz JA, Laguna R, Uriarte E. Effects of cis-resveratrol on inflammatory murine macrophages: antioxidant activity and down-regulation of inflammatory genes. J Leukoc Biol 75: 1156–1165, 2004.PubMedCrossRefGoogle Scholar
  138. Levrand S, Pesse B, Feihl F, Waeber B, Pacher P, Rolli J, Schaller MD, Liaudet L. Peroxynitrite is a potent inhibitor of NF-kappaB activation triggered by inflammatory stimuli in cardiac and endothelial cell lines. J Biol Chem 280: 34878–34887, 2005.PubMedCrossRefGoogle Scholar
  139. Li J, Wang H, Stoner GD, Bray TM. Dietary supplementation with cysteine prodrugs selectively restores tissue glutathione levels and redox status in protein-malnourished mice. J Nutr Biochem 13: 625–633, 2002.PubMedCrossRefGoogle Scholar
  140. Li S, Whorton AR. Regulation of protein tyrosine phosphatase 1B in intact cells by S-nitrosothiols. Arch Biochem Biophys 410: 269–279, 2003.PubMedCrossRefGoogle Scholar
  141. Li X, De Sarno P, Song L, Beckman JS, Jope RS. Peroxynitrite modulates tyrosine phosphorylation and phosphoinositide signaling in human neuroblastoma SH-SY5Y cells: attenuated effects in human 1321N1 astrocytoma cells. Biochem J 331: 599–606, 1998.PubMedGoogle Scholar
  142. Lin A, Karin M. NF-kappaB in cancer: a marked target. Semin Cancer Biol 13: 107–114, 2003.PubMedCrossRefGoogle Scholar
  143. Lin YC, Brown K, Siebenlist U. Activation of NF-kappa B requires proteolysis of the inhibitor I kappa B-alpha: signal-induced phosphorylation of I kappa B-alpha alone does not release active NF-kappa B. Proc Natl Acad Sci USA 92: 552–556, 1995.PubMedCrossRefGoogle Scholar
  144. Liu H, Colavitti R, Rovira II, Finkel T. Redox-dependent transcriptional regulation. Circ Res 97: 967–974, 2005.PubMedCrossRefGoogle Scholar
  145. Lundberg AS, Hahn WC, Gupta P, Weinberg RA. Genes involved in senescence and immortalization. Curr Opin Cell Biol 12: 705–709, 2000.PubMedCrossRefGoogle Scholar
  146. MacMicking J, Xie QW, Nathan C. Nitric oxide and macrophage function. Annu Rev Immunol 15: 323–350, 1997.PubMedCrossRefGoogle Scholar
  147. MacMillan-Crow LA, Greendorfer JS, Vickers SM, Thompson JA. Tyrosine nitration of c-SRC tyrosine kinase in human pancreatic ductal adenocarcinoma. Arch Biochem Biophys 377: 350–356, 2000.PubMedCrossRefGoogle Scholar
  148. Malan D, Levi RC, Alloatti G, Marcantoni A, Bedendi I, Gallo MP. Cyclic AMP and cyclic GMP independent stimulation of ventricular calcium current by peroxynitrite donors in guinea pig myocytes. J Cell Physiol 197: 284–296, 2003.PubMedCrossRefGoogle Scholar
  149. Mallozzi C, Di Stasi AMM, Minetti M. Peroxynitrite modulates tyrosine-dependent signal transduction pathway of human erythrocyte band 3. FASEB J 11: 1281–1290; 1997.PubMedGoogle Scholar
  150. Mallozzi C, Di Stasi AMM, Minetti M. Activation of src tyrosine kinases by peroxynitrite. FEBS Lett 456: 201–206, 1999.PubMedCrossRefGoogle Scholar
  151. Mallozzi C, Di Stasi AM, Minetti M. Nitrotyrosine mimics phosphotyrosine binding to the SH2 domain of the src family tyrosine kinase lyn. FEBS Lett 503: 189–195, 2001.PubMedCrossRefGoogle Scholar
  152. Marshall HE, Stamler JS. Inhibition of NF-kappa B by Snitrosylation. Biochemistry 40: 1688–1693, 2001.PubMedCrossRefGoogle Scholar
  153. Marshall HE, Stamler JS. Nitrosative stress-induced apoptosis through inhibition of NF-kappa B. J Biol Chem 277: 34223–34228, 2002.PubMedCrossRefGoogle Scholar
  154. Marshall HE, Merchant K, Stamler JS. Nitrosation and oxidation in the regulation of gene expression. FASEB J 14: 1889–1900, 2000.PubMedCrossRefGoogle Scholar
  155. Marshall HE, Hess DT, Stamler JS. S-nitrosylation: Physiological regulation of NF-kappaB PNAS 101: 8841–8842, 2004.PubMedCrossRefGoogle Scholar
  156. Massa PE, Li X, Hanidu A, Siamas J, Pariali M, Pareja J, Savitt AG, Catron KM, Li J, Marcu KB. Gene expression profiling in conjunction with physiological rescues of IKKα-null cells with wild type or mutant IKKα reveals distinct classes of IKKα/NF-kB- dependent genes. J Biol Chem 280: 14057–14069, 2005.PubMedCrossRefGoogle Scholar
  157. Matata BM, Galinanes M. Peroxynitrite is an essential component of cytokines production mechanism in human monocytes through modulation of nuclear factor-kappa B DNA binding activity. J Biol Chem 277: 2330–2335, 2002.PubMedCrossRefGoogle Scholar
  158. Matthews JR, Botting CH, Panico M, Morris HR, Hay RT. Inhibition of NF-kB DNA-binding by nitric oxide. Nucl Acids Res 24: 2236–2242, 1996.PubMedCrossRefGoogle Scholar
  159. Mattson MP, Meffert MK. Roles for NF-kB in nerve cell survival, plasticity, and disease. Cell Death Differ 13: 852–860, 2006.PubMedCrossRefGoogle Scholar
  160. May MJ, Ghosh S. IkappaB kinases: kinsmen with different crafts. Science 284: 271–273, 1999.PubMedCrossRefGoogle Scholar
  161. Meister A, Anderson ME. Glutathione. Annu Rev Biochem 52: 711–760, 1983.PubMedCrossRefGoogle Scholar
  162. Melov S, Ravenscroft J, Malik S, Gill MS, Walker DW, Clayton PE, Wallace DC, Malfroy B, Doctrow SR, Lithgow GJ. Extension of life-span with superoxide dismutase/catalase mimetics. Science 289: 1567–1569, 2000.PubMedCrossRefGoogle Scholar
  163. Mercurio F, Zhu H, Murray BW, Shevchenko A, Bennett BL, Li J, Young DB, Barbosa M, Mann M, Manning A, Rao A. IKK-1 and IKK-2: Cytokine-activated IkappaB kinases essential for NF-kappaB activation. Science 278: 860–866, 1997.PubMedCrossRefGoogle Scholar
  164. Mitchell BS. The proteasome-an emerging therapeutic target in cancer. N Engl J Med 348: 2597–2598, 2003.PubMedCrossRefGoogle Scholar
  165. Moncada S, Palmer RMJ, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43: 109–142, 1991.PubMedGoogle Scholar
  166. Mondoro TH, Shafer BC, Vostal JG. Peroxynitrite-induced tyrosine nitration and phosphorylation in human platelets. Free Radic Biol Med 22: 1055–1063, 1997.PubMedCrossRefGoogle Scholar
  167. Moncada S, Higgs EA. Nitric oxide and the vascular endothelium. Handb Exp Pharmacol (176 Pt 1): 213–254, 2006.Google Scholar
  168. Monteiro HP. Signal transduction by protein tyrosine nitration: competition or cooperation with tyrosine phosphorylation-dependent signaling events? Free Radic Biol Med 33: 765–773, 2002.PubMedCrossRefGoogle Scholar
  169. Nair KS. Aging muscle. Am J Clin Nutr 81: 953–963, 2005.PubMedGoogle Scholar
  170. Nalwaya D, Deen WM. Peroxynitrite exposure of cells cocultured with macrophages. Biomed Eng 32: 664–676, 2004.CrossRefGoogle Scholar
  171. Nathan C. Nitric oxide as a secretory product of mammalian cells. FASEB J 6: 3051–3064, 1992.PubMedGoogle Scholar
  172. Nishiyama A, Masutani H, Nakamura H, Nishinaka Y, Yodoi J. Redox regulation by thioredoxin and thioredoxin-binding proteins. IUBMB Life 52: 29–33, 2001.PubMedCrossRefGoogle Scholar
  173. Noack E, Murphy M. Oxidative stress; in Oxidants and Antioxidants, Sies, H. (ed.), pp. 445–489, 1991 Academic Press, San Diego, California.Google Scholar
  174. Oitzinger W, Hofer-Warbinek R, Schmid JA, Koschelnick Y, Binder Br, de Martin R. Adenovirus-mediated expression of a mutant IkappaB kinase 2 inhibits the response of endothelial cells to inflammatory stimuli. Blood 97: 1611–1617, 2001.PubMedCrossRefGoogle Scholar
  175. Okamoto T, Valacchi G, Kishorchandra G, Takaaki A, van der Vliet A. S-Nitrosothiols inhibit cytokine-mediated induction of matrix metalloproteinase-9 in airway epithelial cells. Am J Respir Cell Mol Biol 27: 463–473, 2002.PubMedGoogle Scholar
  176. Orange JS, Levy O, Geha RS. Human disease resulting from gene mutations that interfere with appropriate nuclear factor-kB activation. Immunol Rev 203: 21–37, 2005.PubMedCrossRefGoogle Scholar
  177. Padgett CM, Whorton AR. Cellular responses to nitric oxide: Role of protein S-thiolation/dethiolation. Arch Biochem Biophys 358: 232–242, 1998.PubMedCrossRefGoogle Scholar
  178. Pahl HL. Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene 18: 6853–6866, 1999.PubMedCrossRefGoogle Scholar
  179. Palmer HJ, Paulson KE. Reactive oxygen species and antioxidants in signal transduction and gene expression. Nutr Rev 55: 353–361, 1997.PubMedCrossRefGoogle Scholar
  180. Palmer RM, Rees DD, Ashton DS, Moncada S. L-arginine is the physiological precursor for the formation of nitric oxide in endothelium-dependent relaxation. Biochem Biophys Res Commun 153: 1251–1256, 1988.PubMedCrossRefGoogle Scholar
  181. Pan MH, Lin-Shiau SY, Lin JK. Comparative studies on the suppression of nitric oxide synthase by curcumin and its hydrogenated metabolites through down-regulation of IkappaB kinase and NFkappaB activation in macrophages. Biochem Pharmacol 60: 1665–1676, 2000.PubMedCrossRefGoogle Scholar
  182. Papa S, Bubici C, Zazzeroni F, Pham CG, Kuntzen C, Knabb JR, Dean K, Franzoso G. The NF-kB-mediated control of the JNK cascade in the antagonism of programmed cell death in health and disease. Cell Death Differ 13: 712–729, 2006.PubMedCrossRefGoogle Scholar
  183. Park HS, Huh SH, Kim MS, Lee SH, Choi EJ. Nitric oxide negatively regulates c-Jun N-terminal kinase/stress-activated protein kinase by means of S nitrosylation. Proc Natl Acad Sci USA 97: 14382–14387, 2000.PubMedCrossRefGoogle Scholar
  184. Park SW, M. D. Mostaqul Huq MD, Xinli Hu X, Wei LN. Tyrosine nitration on p65. A novel mechanism to rapidly inactivate nuclear factor-kB. Mol Cell Proteomics 4: 300–309, 2005.PubMedCrossRefGoogle Scholar
  185. Peng HB, Libby P, Liao JK. Induction and stabilization of I kappa Balpha by nitric oxide mediates inhibition of NF-kappa B. J Biol Chem 270: 14214–14219, 1995.PubMedCrossRefGoogle Scholar
  186. Peng HB, Spiecker M, Liao JK. Inducible nitric oxide: an autoregulatory feedback inhibitor of vascular inflammation. J Immunol 161: 1970–1976, 1998.PubMedGoogle Scholar
  187. Perkins ND, Gilmore TD. Good cop, bad cop: the different faces of NF-kB. Cell Death Differ 13: 759–772, 2006.PubMedCrossRefGoogle Scholar
  188. Perkins ND, Felzien LK, Betts JC, Leurg K, Beach DH, Nabel GJ. Regulation of NF-kappa B by cyclin-dependant kinases associated with the p300 coactivator. Science 1997 Jan 24; 275(5299):523–527.PubMedCrossRefGoogle Scholar
  189. Petrova RD, Mahajna J, Reznick AZ, Wasser SP, Denchev CM, Nevo E. Fungal substances as modulators of NF-kappaB activation pathway. Mol Biol Rep 2006 DOI 10.1007/s11033–006–9027–5.Google Scholar
  190. Pickart CM. Back to the future with ubiquitin. Cell 116: 181–190, 2004.PubMedCrossRefGoogle Scholar
  191. Pikarsky E, Porat RM, Stein I, Abramovitch R, Amit S, Kasem G, Gutkovich-Pyest E, Urieli-Shoval S, Galun E, Ben-Neriah Y. NF-kB functions as a tumor promoter in inflammation-associated cancer. Nature 431: 461–466, 2004.PubMedCrossRefGoogle Scholar
  192. Pinkus R, Weiner LM, Daniel V. The role of oxidants and antioxidants in the induction of AP-1, NF-kB and glutathione S-transferase gene expression. J Biol Chem 271: 13422–13429, 1996.PubMedCrossRefGoogle Scholar
  193. Pomerantz JL, Baltimore D. Two pathways to NF-kB. Mol Cell 10: 693–695, 2002.PubMedCrossRefGoogle Scholar
  194. Powis G, Montfort WR. Properties and biological activities of thioredoxins. Ann Rev Pharmacol Toxicol 41: 261–295, 2001.CrossRefGoogle Scholar
  195. Pryor WA, Squadrito GL. The chemistry of peroxynitrite: a product from the reaction of nitric oxide with superoxide. Am J Physiol 268: L699–L722, 1995.PubMedGoogle Scholar
  196. Radi R, Beckman JS, Bush KM, Freeman BA. (1991) Peroxynitrite-induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide. Arch Biochem Biophys 288: 481–487, 1991.PubMedCrossRefGoogle Scholar
  197. Radi R, Peluffo G, Alvarez MN, Naviliat M, Cayota A. Unraveling peroxynitrite formation in biological systems. Free Radic Biol Med 30: 463–488, 2001.PubMedCrossRefGoogle Scholar
  198. Regnier CH, Song HY, Gao X, Goeddel DV, Cao Z, Rothe M. Identification and characterization of an IkappaB kinase. Cell 90: 373–383, 1997.PubMedCrossRefGoogle Scholar
  199. Reid MB, Durham W. Generation of reactive oxygen and nitrogen species in contracting skeletal muscle. Potential impact on aging. Ann NY Acad Sci 959: 108–116, 2002.PubMedGoogle Scholar
  200. Reynaert NL, Ckless K, Korn SH, Vos N, Guala AS, Wouters EFM, van der Vliet A, Janssen-Heininger YMW. Nitric oxide represses inhibitory kB kinase through S-nitrosylation. PNAS 101: 8945–8950, 2004.PubMedCrossRefGoogle Scholar
  201. Reznick AZ, Steinhagen-Thiessen E, Gellersen B, Gershon D. The effect of short- and long-term exercise on aldolase activity in muscles of CW-1 and C57/BL mice of various ages. Mech Ageing Dev 23: 253–258, 1983.PubMedCrossRefGoogle Scholar
  202. Reznick AZ, Steinhagen-Thiessen E, Gellersen B, Gershon D. Effect of short- and long-term endurance training on creatine phosphokinase activity in skeletal and cardiac muscles of CW-1 and C57BL mice. Gerontology 33: 14–18, 1987.PubMedCrossRefGoogle Scholar
  203. Reznick AZ, Steinhagen-Thiessen E, Silbermann M. Alkaline phosphatase activity in striated muscle: the effect of aging and long-term training in female mice. Arch Gerontol Geriatr 9: 59–65, 1989.PubMedCrossRefGoogle Scholar
  204. Reznick AZ, Witt EH, Silbermann M, Packer L. The threshold of age in exercise and antioxidants action. EXS 62: 423–427, 1992a.PubMedGoogle Scholar
  205. Reznick AZ, Witt E, Matsumoto M, Packer L. Vitamin E inhibits protein oxidation in skeletal muscle of resting and exercised rats. Biochem Biophys Res Commun 189: 801–806, 1992b.PubMedCrossRefGoogle Scholar
  206. Reznick AZ, Menashe O, Bar-Shai M, Coleman R, Carmeli E. Expression of matrix metalloproteinases, inhibitor, and acid phosphatase in muscles of immobilized hindlimbs of rats. Muscle Nerve 27: 51–59, 2003.PubMedCrossRefGoogle Scholar
  207. Rogers JA, Fuseler JW. Regulation of NF-jB activation and nuclear translocation by exogenous nitric oxide (NO) donors in TNF-a activated vascular endothelial cells. Nitric Oxide 16: 379–391, 2007.PubMedCrossRefGoogle Scholar
  208. Rothwarf DM, Zandi E, Natoli G, Karin M. IKK-gamma is an essential regulatory subunit of the IkappaB kinase complex. Nature 395: 297–300, 1998.PubMedCrossRefGoogle Scholar
  209. Rothwarf DM, Karin M. The NF-kappa B activation pathway: a paradigm in information transfer from membrane to nucleus, Sci STKE 5 (1999) RE1.Google Scholar
  210. Sauer H, Wartenberg M, Hescheler J. Reactive oxygen species as intracellular messengers during cell growth and differentiation. Cell Physiol Biochem 11: 173–186, 2001.PubMedCrossRefGoogle Scholar
  211. Scheller K, Seibel P, Sekeris CE. Glucocorticoid and thyroid hormone receptors in mitochondria of animal cells. Int Rev Cytol 222: 1–61, 2003.PubMedCrossRefGoogle Scholar
  212. Scheller K, Sekeris CE, Krohne G, Hock R, Hansen IA, Scheer U. Localization of glucocorticoid hormone receptors in mitochondria of human cells. Eur J Cell Biol. 2000 May; 79(5):299–307.PubMedCrossRefGoogle Scholar
  213. Schmidt HHHW. NO, CO and OH: endogenous soluble guanylyl cyclase-activating factors. FEBS Lett 307: 102–107, 1992.PubMedCrossRefGoogle Scholar
  214. Schmidt HHHW, Walter U. NO at work. Cell 78: 919–925, 1994.PubMedCrossRefGoogle Scholar
  215. Schmidt HHHW, Lohmann SM, Walter U. The nitric oxide and cGMP signal transduction system: regulation and mechanism of action. Biochim Biophys Acta 1178: 153–175, 1993.PubMedCrossRefGoogle Scholar
  216. Schmitz HP, Jockel L, Block C, Heinisch JJ. Domain shuffling as a tool for investigation of protein function: substitution of the cysteine-rich region of Raf kinase and PKC eta for that of yeast Pkc1p. J Mol Biol 311: 1–7, 2001.PubMedCrossRefGoogle Scholar
  217. Schroede RA, Cai C, Kuo PC. Endotoxin-mediated nitric oxide synthesis inhibits IL-1beta gene transcription in ANA-1 murine macrophages. Am J Physiol 277: C523–C530, 1999.Google Scholar
  218. Sen R, Baltimore D. Multiple nuclear factors interact with the immunoglobulin enhancer sequences 1: Cell 1986 Aug 29; 46(5):705–716.PubMedCrossRefGoogle Scholar
  219. Sen CK, Packer L. Antioxidant and redox regulation of gene transcription. FASEB J 10: 709–720, 1996.PubMedGoogle Scholar
  220. Sen CK, Khanna S, Reznick AZ, Roy S, Packer L. Glutathione regulation of tumor necrosis factor-alpha-induced NF-kappa B activation in skeletal muscle-derived L6 cells. Biochem Biophys Res Commun 237: 645–649, 1997.PubMedCrossRefGoogle Scholar
  221. Sen CK. Glutathione homeostasis in response to exercise training and nutritional supplements. Mol Cell Biochem 196: 31–42, 1999.PubMedCrossRefGoogle Scholar
  222. Senftleben U, Cao Y, Xiao G, Greten FR, Krahn G, Bonizzi G, Chen Y, Hu Y, Fong A, Sun SC, Karin M. Activation by IKKalpha of a second, evolutionary conserved, NF-kB signaling pathway. Science 293: 1495–1499, 2001.PubMedCrossRefGoogle Scholar
  223. Sevanian A, Hochstein P. Mechanisms and consequences of lipid peroxidation in biological systems. Ann Rev Nutr 5: 365–390, 1985.CrossRefGoogle Scholar
  224. Shin WS, Hong YH, Peng HB, De Caterina R, Libby P, Liao JK. Nitric oxide attenuates vascular smooth muscle cell activation by interferon-f. The role of constitutive NF-kB activity. J Biol Chem 271: 11317–11324, 1996.PubMedCrossRefGoogle Scholar
  225. Shrivastava A, Aggarwal BB. Antioxidants differentially regulate activation of nuclear factor-kappa B, activator protein-1, c-jun amino-terminal kinases, and apoptosis induced by tumor necrosis factor: evidence that JNK and NF-kappa B activation are not linked to apoptosis. Antioxid Redox Signal 1: 181–191, 1999.PubMedCrossRefGoogle Scholar
  226. Sies H. Oxidative stress: Oxidants and antioxidants. Exp Physiol 82: 291–295, 1997.PubMedGoogle Scholar
  227. Sies H. Glutathione and its role in cellular functions. Free Radic Biol Med 27: 916–921, 1999.PubMedCrossRefGoogle Scholar
  228. Singh S, Darnay BG, Aggarwal BB. Site-specific tyrosine phosphorylation of IkB-α negatively regulates its inducible phosphorylation and degradation. J Biol Chem 271: 31049–31054, 1996.PubMedCrossRefGoogle Scholar
  229. Song W, Kwak HB, Lawler JM. Effect of exercise training on iNOS and pro-apoptotic signaling in aging skeletal muscle. FASEB J 18: A753, 2004.Google Scholar
  230. Song W, Kwak HB, Lawler JM. Exercise training attenuates age-induced changes in apoptotic signaling in rat skeletal muscle. Antioxid Redox Signal 8: 517–528, 2006.PubMedCrossRefGoogle Scholar
  231. Stamler JS, Hausladen A. Oxidative modifications in nitrosative stress. Nature Struct Biol 5: 247–249, 1998.PubMedCrossRefGoogle Scholar
  232. Steinhagen-Thiessen E, Reznick AZ, Hilz H. Negative adaptation to physical training in senile mice. Mech Ageing Dev 12: 231–236, 1980.PubMedCrossRefGoogle Scholar
  233. Steinhagen-Thiessen E, Reznick AZ, Hilz H. Positive and negative adaptation of muscle enzymes in aging mice subjected to physical exercise. Mech Ageing Dev 16: 363–369, 1981.PubMedCrossRefGoogle Scholar
  234. Storz P, Doppler H, Toker A. Protein kinase D mediates mitochondrion-to-nucleus signaling and detoxification from mitochondrial reactive oxygen species. Mol Cell Biol 25: 8520–8530, 2005.PubMedCrossRefGoogle Scholar
  235. Storz P. Reactive oxygen species–mediated mitochondria-to-nucleus signaling: A key to aging and radical-caused diseases. Sci STKE 2006, re3.Google Scholar
  236. Storz P. Mitochondrial ROS- radical detoxification, mediated by protein kinase D. Trends Cell Biol 17: 13–18, 2007.PubMedCrossRefGoogle Scholar
  237. Surh YJ, Han SS, Keum YS, Seo HJ, Lee SS. Inhibitory effects of curcumin and capsaicin on phorbol ester-induced activation of eukaryotic transcription factors, NF kappaB and AP-1. Biofactors 12: 107–112, 2000.PubMedCrossRefGoogle Scholar
  238. Suzuki YJ, Forman HJ, Sevanian A. Oxidants as stimulators of signal transduction. Free Radic Biol Med 22: 269–285, 2000.CrossRefGoogle Scholar
  239. Tacconelli A, Farina AR, Cappabianca L, Desantis G, Tessitore A, Vetuschi A, Sferra R, Rucci N, Argenti B, Screpanti I, Gulino A, Mackay AR. TrkA alternative splicing: a regulated tumor-promoting switch in human neuroblastoma. Cancer Cell 6: 347–360, 2004.PubMedCrossRefGoogle Scholar
  240. Tai DI, Tsai SL, Chang YH, Huang SN, Chen TC, Chang KS, Liaw YF. Constitutive activation of nuclear factor kappaB in hepatocellular carcinoma. Cancer 89: 2274–2281, 2000.PubMedCrossRefGoogle Scholar
  241. Tam W, Lee L, Davis L, Sen R. Cytoplasmic sequestration of rel proteins by IkappaBalpha requires CRM1-dependent nuclear export. Mol Cell Biol 20: 2269–2284, 2000.PubMedCrossRefGoogle Scholar
  242. Tanaka T, Nakamura H, Nishiyama A, Hosoi F, Masutani H, Wada H, Yodoi J. Redox regulation by thioredoxin superfamily; protection against oxidative stress and aging. Free Radic Res 33: 851–855, 2000.PubMedCrossRefGoogle Scholar
  243. Tao Y, Williams-Skipp C, Scheinman RI. Mapping of glucocorticoid receptor DNA binding domain surfaces contributing to transrepression of NF-kappaB and induction of apoptosis. J Boil Chem 2001 Jan 26; 276(4): 2329–2332. Epub 2000 Dec 5.CrossRefGoogle Scholar
  244. Torres M, Forman HJ. Redox signaling and the MAP kinase pathways. Biofactors 17: 287–296, 2003.PubMedCrossRefGoogle Scholar
  245. Turko IV and Murad F. Protein nitration in cardiovascular diseases. Pharmacol Rev 54: 619–634, 2002.PubMedCrossRefGoogle Scholar
  246. Uchida K. Cellular response to bioactive lipid peroxidation products. Free Radic Res 33: 731–737, 2000.PubMedCrossRefGoogle Scholar
  247. UmanskyV, Hehner SP, Dumont A, Hofmann TG, Schirrmacher V, Droge W, Schmitz ML. Costimulatory effect of nitric oxide on endothelial NF-kB implies a physiological self-amplifying mechanism. Eur J Immunol 28: 2276–2282, 1998.PubMedCrossRefGoogle Scholar
  248. Valen G, Yan ZQ, Hansson GK. Nuclear factor kappa-B and the heart. J Am Coll Cardiol 38: 307–314, 2001.PubMedCrossRefGoogle Scholar
  249. Wallace DC. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: A dawn for evolutionary medicine. Annu Rev Genet 39: 359–407, 2005.PubMedCrossRefGoogle Scholar
  250. Wang C. Deng L, Hong M, Akkaraju GR, Inoue J, Chenet ZJ. TAK1 is a ubiquitin dependent kinase of MKK and IKK. Nature 412: 346–351, 2001.PubMedCrossRefGoogle Scholar
  251. Wickens AP. Ageing and the free radical theory. Respir Physiol 128: 379–391, 2001.PubMedCrossRefGoogle Scholar
  252. Witt EH, Reznick AZ, Viguie CA, Starke-Reed P, Packer L. Exercise, oxidative damage and effects of antioxidant manipulation. J Nutr 122: 766–773, 1992.PubMedGoogle Scholar
  253. Xiao G, Harhaj EW, Sun SC. NF-kappaB-inducing kinase regulates the processing of NF-kB2 p100. Mol Cell 7: 401–409, 2001.PubMedCrossRefGoogle Scholar
  254. Yamakura F, Taka H, Fujimura T, Murayama K. Inactivation of human manganese-superoxide dismutase by peroxynitrite is caused by exclusive nitration of tyrosine 34 to 3-nitrotyrosine. J Biol Chem 273: 14085–14089, 1998.PubMedCrossRefGoogle Scholar
  255. Yamamoto Y, Gaynor RB. Therapeutic potential of inhibition of the NF kappaB pathway in the treatment of inflammation and cancer. J Clin Invest 107: 135 142, 2001.PubMedCrossRefGoogle Scholar
  256. Yamamoto Y, Verma UN, Prajapati S, Kwak YT, Gaynor RB. Histone H3 phosphorylation by IKK-alpha is critical for cytokine-induced gene expression. Nature 423: 655–659, 2003.PubMedCrossRefGoogle Scholar
  257. Yamamoto Y, Gaynor RB. IkappaB kinases: key regulators of the NF-kappaB pathway. Trends Biochem Sci 29: 72–79, 2004.PubMedCrossRefGoogle Scholar
  258. Zandi E, Rothwarf DM, Delhase M, Hayakawa M, Karin M. The IkappaB kinase complex (IKK) contains two kinase subunits, IKKalpha and IKKbeta, necessary for IkappaB phosphorylation and NF-kappaB activation. Cell 91: 243–252, 1997.PubMedCrossRefGoogle Scholar
  259. Zarzhevsky N, Coleman R, Volpin G, Fuchs D, Stein H, Reznick AZ. Muscle recovery after immobilisation by external fixation. J Bone Joint Surg Br 81: 896–901, 1999.PubMedCrossRefGoogle Scholar
  260. Zarzhevsky N, Carmeli E, Fuchs D, Coleman R, Stein H, Reznick AZ. Recovery of muscles of old rats after hindlimb immobilisation by external fixation is impaired compared with those of young rats. Exp Gerontol 36: 125–140, 2001a.PubMedCrossRefGoogle Scholar
  261. Zarzhevsky N, Menashe O, Carmeli E, Stein H, Reznick AZ. Capacity for recovery and possible mechanisms in immobilization atrophy of young and old animals. Ann NY Acad Sci 928: 212–225, 2001b.PubMedCrossRefGoogle Scholar
  262. Zhang R, Al-Lamki R, Bai L, Streb JW, Miano JM, Bradley J, Min W. Thioredoxin-2 inhibits mitochondria-located ASK1-mediated apoptosis in a JNK-independent manner. Circ Res 94: 1483–1491, 2004.PubMedCrossRefGoogle Scholar
  263. Zingarelli B, Sheehan M, Wong HR. Nuclear factor-kappaB as a therapeutic target in critical care medicine. Crit Care Med 31: S105–S111, 2003.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • Predrag S. Ljubuncic
    • 1
  • Marina Bar-Shai
    • 1
  • Abraham Z. Reznick
    • 1
  1. 1.Department of Anatomy and Cell BiologyTechnion-Israel Institute of TechnologyIsrael

Personalised recommendations