Skip to main content

Theta Phase Precession for Spatial Representation in the Entorhinal-dentate Gyrus-ca3 Network

  • Conference paper
Advances in Cognitive Neurodynamics ICCN 2007
  • 739 Accesses

Abstract

In rats, the hippocampus plays a crucial role in spatial representation. This ability is related to cells firing at specific locations in the environment. Recently, it has been reported that entorhinal cells, which convey the major cortical input to the hippocampus, have a very different spatial pattern of firing activity. Each cell fires at several locations in an environment, these locations forming a grid-like pattern. Both the entorhinal ‘grid cells’ and the hippocampal ‘place cells’ fire with theta phase precession; the phase between the spiking activity and the theta local field potential continuously precesses while traversing a receptive field. Previously, the authors demonstrated that this mechanism is sufficient to explain the transformation of entorhinal grid fields to dentate gyrus place fields. This paper investigates the necessary conditions for the appearance of place fields in the CA3 network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 389.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 499.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. OKeefe, J., Dostrovsky, J.: The hippocampus as a spatial map: preliminary evidence from unit activity in the freely moving rat. Brain Research 34 (1971) 171–175.

    Article  CAS  Google Scholar 

  2. OKeefe, J., Recce, M.: Phase relationship between hippocampal place units and the eeg theta rhythm. Hippocampus 3 (1993) 317–330.

    Article  CAS  Google Scholar 

  3. Fyhn, M., Molden, S., Witter, M., Moser, E., Moser, M.: Spatial representation in the entorhinal cortex. Science 305 (2004) 1258–1264.

    Article  PubMed  CAS  Google Scholar 

  4. Hafting, T., Fyhn, M., Molden, S., Moser, M.B., Moser, E.I.: Microstructure of a spatial map in the entorhinal cortex. Nature 436 (2005) 801–806.

    Article  PubMed  CAS  Google Scholar 

  5. Hafting, T., Fyhn, M., Moser, M.B., Moser, E.I.: Phase precession and phase locking in entorhinal grid cells. Abstract Viewer/Itinerary Planner Atlanta, GA: Society for Neuroscience. Program No. 68.8 (2006).

    Google Scholar 

  6. Solstad, T., Moser, E.I., Einevoll, G.T.: From grid cells to place cells: a mathematical model. Hippocampus 16 (2006) 1026–1031.

    Article  PubMed  Google Scholar 

  7. McNaughton, B., Battaglia, F., Jensen, O., Moser, E., Moser, M.B.: Path-integration and the neural basis of the cognitive map. Nature Reviews Neuroscience 7 (2006) 663–678.

    Article  PubMed  CAS  Google Scholar 

  8. Rolls, E.T., Stringer, S.M., Elliot, T.: Entorhinal cortex grid cells can map to hippocampal place cells by competitive learning. Network: Computation in Neural Systems 15 (2006) 447–465.

    Article  Google Scholar 

  9. Molter, C., Yamaguchi, Y.: Theta phase precession mediates the entorhinal to hippocampal transformation of space representation in agreement with hippocampal global remapping. Abstract Viewer/Itinerary Planner San Diego, CA: Society for Neuroscience. Program No. xxx (2007).

    Google Scholar 

  10. Leutgeb, J., Leutgeb, S., Moser, M.B., Moser, E.I.: Pattern separation in the dentate gyrus and ca3 of the hippocampus. Science 315 (2007) 961–966.

    Article  PubMed  CAS  Google Scholar 

  11. Treves, A., Rolls, E.: Computational constraints suggest the need for two distinct input systems to the hippocampal ca3 network. Hippocampus 2 (1992) 189–199.

    Article  PubMed  CAS  Google Scholar 

  12. Rolls, E., Deco, G.: Computational Neuroscience of Vision. Oxford University Press, Oxford (2002).

    Google Scholar 

  13. Turrigiano, G.: Homeostatic plasticity in neuronal networks: the more things change, the more they stay the same. Trends Neuroscience 22 (1999) 221–227.

    Article  CAS  Google Scholar 

  14. Yamaguchi, Y.: A theory of hippocampal memory based on theta phase precession. Biological Cybernetics 89 (2003) 1–9.

    PubMed  Google Scholar 

  15. Maurer, A.P., Cowen, S.L., Burke, S.N., Barnes, C.A., McNaughton, B.L.: Organization of hippocampal cell assemblies based on theta phase precession. Hippocampus 16 (2006) 785–794.

    Article  PubMed  Google Scholar 

  16. Singer, W.: Neuronal synchronization: a solution to the binding problem? In: The Mind-Brain Continuum. Sensory Processes. MIT Press, Cambridge (1996) 100–130.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Molter, C., Yamaguchi, Y. (2008). Theta Phase Precession for Spatial Representation in the Entorhinal-dentate Gyrus-ca3 Network. In: Wang, R., Shen, E., Gu, F. (eds) Advances in Cognitive Neurodynamics ICCN 2007. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8387-7_46

Download citation

Publish with us

Policies and ethics