Multi-Qubit State Teleportation via Multiparty-Controlled Entanglement

  • Ying Guo
  • Guihua Zeng
Conference paper

Abstract

Consciousness is discussed from viewpoint of theory of Entropy-partition of complex system. Human brain’s system self-organizably and adaptively implements partition, aggregation and integration, and consciousness emerges. We use mutual information to define correlative measure between (among) variables or subsystems of complex system. In order to make good use of the correlative measure in infinite-dimensional space, proof of countable superadditivity and uniqueness of the correlative measure is given. Emergence of consciousness is mathematically (Conditioned teleportation plays important roles in the quantum communication and quantum information processing. In this paper the conditioned teleportation schemes of N-qubit state with M-agent have been investigated, where N, M are integers and N, M ⩾ 1. Since absence of any agents will lead impossibility of restoring the teleported N-qubit state, the proposed schemes may be employed in the quantum secret sharing and the distributed quantum computation.

Keywords

Braunstein 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. H. Bennett, G. Brassard, C. Crépeau, et al., Phys. Rev. Lett. 70, 1985 (1993).CrossRefGoogle Scholar
  2. 2.
    Y. Yeo and W. K. Chua, Phys. Rev. Lett. 96, 060502 (2006).PubMedCrossRefGoogle Scholar
  3. 3.
    F. G. Deng, C. Y. Li, Y. S. Li, H. Y. Zhou and Y. Wang, Phys. Rev. A 72, 022338 (2005).Google Scholar
  4. 4.
    M. Zukowski, A. Zeilinger, M. A. Home and A. K. Ekert, Phys. Rev. Lett. 71, 4287 (1993).PubMedCrossRefGoogle Scholar
  5. 5.
    J. Fang, Y. Lin, S. Zhu, and X. Chen, Phys. Rev. A 67, 014305 (2003).CrossRefGoogle Scholar
  6. 6.
    W. Son, J. Lee, M. S. Kim, and Y.-J. Park, Phys. Rev. A 64, 064304 (2001).CrossRefGoogle Scholar
  7. 7.
    E. F. Galvao and L. Hardy, Phys. Rev. A 62, 012309 (2000).CrossRefGoogle Scholar
  8. 8.
    M. Fujii, Phys. Rev. A 68, 050302 (2003).CrossRefGoogle Scholar
  9. 9.
    N. Ba An, Phys. Rev. A 68, 022321 (2003).CrossRefGoogle Scholar
  10. 10.
    W. P. Bowen, N. Treps, B. C. Buchler, et al., Phys. Rev. A 67, 032302 (2003).CrossRefGoogle Scholar
  11. 11.
    T. J. Johnson, S. D. Bartlett, and B. C. Sanders, Phys. Rev. A 66, 042326 (2002).CrossRefGoogle Scholar
  12. 12.
    D. Bouwmeester, J. W. Pan, K. Mattle, et al., Nature (London) 390, 575 (1997).CrossRefGoogle Scholar
  13. 13.
    A. Furusawa, J. L. Soensen, S. L. Braunstein, et al., Science 282, 706 (1998).PubMedCrossRefGoogle Scholar
  14. 14.
    M. A. Nielsen, E. Knill, and R. Laflamme, Nature (London) 396, 52 (1998).CrossRefGoogle Scholar
  15. 15.
    G. Y. Xiang, J. Li and G. C. Guo, Phys. Rev. A 71, 044304 (2005).CrossRefGoogle Scholar
  16. 16.
    A. Karlsson and M. Bourennane, Phys. Rev. A 58, 4394 (1998).CrossRefGoogle Scholar
  17. 17.
    C. P. Yang, S. I. Chu and S. Han, Phys. Rev. A 70, 022329 (2005).CrossRefGoogle Scholar
  18. 18.
    M. Hillery, V. Buzek, and A. Berthiaume, Phys. Rev. A 59, 1829 (1999).CrossRefGoogle Scholar
  19. 19.
    R. Cleve, D. Gottesman, and H. K. Lo, Phys. Rev. Lett. 83, 648 (1999).CrossRefGoogle Scholar
  20. 20.
    S. Bandyopadhyay, Phys. Rev. A 62, 012308 (2000).CrossRefGoogle Scholar
  21. 21.
    Li-Yi Hsu, Phys. Rev. A 68, 022306 (2003).CrossRefGoogle Scholar
  22. 22.
    A. C. A. Nascimento, J. M. Quade, and H. Imai, Phys. Rev. A 64, 042311 (2001).CrossRefGoogle Scholar
  23. 23.
    A. Zhang, Y. Li and Z. Man, Phys. Rev. A 71, 044301 (2005).CrossRefGoogle Scholar
  24. 24.
    T. Ogawa, A. Sasaki, M. Iwamoto and H. Yamamoto, Phys. Rev. A 72, 032318 (2005).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Ying Guo
    • 1
  • Guihua Zeng
  1. 1.Department of Electronic EngineeringShanghai Jiaotong UniversityChina

Personalised recommendations