Skip to main content

Multi-Qubit State Teleportation via Multiparty-Controlled Entanglement

  • Conference paper
Advances in Cognitive Neurodynamics ICCN 2007
  • 943 Accesses

Abstract

Consciousness is discussed from viewpoint of theory of Entropy-partition of complex system. Human brain’s system self-organizably and adaptively implements partition, aggregation and integration, and consciousness emerges. We use mutual information to define correlative measure between (among) variables or subsystems of complex system. In order to make good use of the correlative measure in infinite-dimensional space, proof of countable superadditivity and uniqueness of the correlative measure is given. Emergence of consciousness is mathematically (Conditioned teleportation plays important roles in the quantum communication and quantum information processing. In this paper the conditioned teleportation schemes of N-qubit state with M-agent have been investigated, where N, M are integers and N, M ⩾ 1. Since absence of any agents will lead impossibility of restoring the teleported N-qubit state, the proposed schemes may be employed in the quantum secret sharing and the distributed quantum computation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 389.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 499.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. H. Bennett, G. Brassard, C. Crépeau, et al., Phys. Rev. Lett. 70, 1985 (1993).

    Article  Google Scholar 

  2. Y. Yeo and W. K. Chua, Phys. Rev. Lett. 96, 060502 (2006).

    Article  PubMed  Google Scholar 

  3. F. G. Deng, C. Y. Li, Y. S. Li, H. Y. Zhou and Y. Wang, Phys. Rev. A 72, 022338 (2005).

    Google Scholar 

  4. M. Zukowski, A. Zeilinger, M. A. Home and A. K. Ekert, Phys. Rev. Lett. 71, 4287 (1993).

    Article  PubMed  Google Scholar 

  5. J. Fang, Y. Lin, S. Zhu, and X. Chen, Phys. Rev. A 67, 014305 (2003).

    Article  Google Scholar 

  6. W. Son, J. Lee, M. S. Kim, and Y.-J. Park, Phys. Rev. A 64, 064304 (2001).

    Article  Google Scholar 

  7. E. F. Galvao and L. Hardy, Phys. Rev. A 62, 012309 (2000).

    Article  Google Scholar 

  8. M. Fujii, Phys. Rev. A 68, 050302 (2003).

    Article  Google Scholar 

  9. N. Ba An, Phys. Rev. A 68, 022321 (2003).

    Article  Google Scholar 

  10. W. P. Bowen, N. Treps, B. C. Buchler, et al., Phys. Rev. A 67, 032302 (2003).

    Article  Google Scholar 

  11. T. J. Johnson, S. D. Bartlett, and B. C. Sanders, Phys. Rev. A 66, 042326 (2002).

    Article  Google Scholar 

  12. D. Bouwmeester, J. W. Pan, K. Mattle, et al., Nature (London) 390, 575 (1997).

    Article  CAS  Google Scholar 

  13. A. Furusawa, J. L. Soensen, S. L. Braunstein, et al., Science 282, 706 (1998).

    Article  PubMed  CAS  Google Scholar 

  14. M. A. Nielsen, E. Knill, and R. Laflamme, Nature (London) 396, 52 (1998).

    Article  CAS  Google Scholar 

  15. G. Y. Xiang, J. Li and G. C. Guo, Phys. Rev. A 71, 044304 (2005).

    Article  Google Scholar 

  16. A. Karlsson and M. Bourennane, Phys. Rev. A 58, 4394 (1998).

    Article  CAS  Google Scholar 

  17. C. P. Yang, S. I. Chu and S. Han, Phys. Rev. A 70, 022329 (2005).

    Article  Google Scholar 

  18. M. Hillery, V. Buzek, and A. Berthiaume, Phys. Rev. A 59, 1829 (1999).

    Article  CAS  Google Scholar 

  19. R. Cleve, D. Gottesman, and H. K. Lo, Phys. Rev. Lett. 83, 648 (1999).

    Article  CAS  Google Scholar 

  20. S. Bandyopadhyay, Phys. Rev. A 62, 012308 (2000).

    Article  Google Scholar 

  21. Li-Yi Hsu, Phys. Rev. A 68, 022306 (2003).

    Article  Google Scholar 

  22. A. C. A. Nascimento, J. M. Quade, and H. Imai, Phys. Rev. A 64, 042311 (2001).

    Article  Google Scholar 

  23. A. Zhang, Y. Li and Z. Man, Phys. Rev. A 71, 044301 (2005).

    Article  Google Scholar 

  24. T. Ogawa, A. Sasaki, M. Iwamoto and H. Yamamoto, Phys. Rev. A 72, 032318 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Guo, Y., Zeng, G. (2008). Multi-Qubit State Teleportation via Multiparty-Controlled Entanglement. In: Wang, R., Shen, E., Gu, F. (eds) Advances in Cognitive Neurodynamics ICCN 2007. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8387-7_164

Download citation

Publish with us

Policies and ethics