Skip to main content

Synchronization Effects in Networks of Striatal Fast Spiking Interneurons – Role of Gap Junctions

  • Conference paper
  • 950 Accesses

Abstract

Recent studies have found gap junctions between striatal fast spiking interneurons (FSN). Gap junctions between neocortical FSNs cause increased synchrony of firing in response to current injection, but the effect of gap junctions in response to synaptic input is unknown. To explore this issue, we built a network model of FSNs. Each FSN connects to 30–40% of its neighbours, as found experimentally, and each FSN in the network is activated by simulated up-state synaptic inputs. Simulation experiments show that the proportion of synchronous spikes in coupled FSNs increases with gap junction conductance. Proximal gap junctions increase the synchronization more than distal gap junctions. During up-states the synchronization effects in FSNs coupled pairwise with proximal gap junctions are small for experimentally estimated gap junction conductances; however, higher order correlations are significantly increased in larger FSN networks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   389.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   499.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bolam, J.P., Hanley, J.J., Booth, P.A.C., Bevan, M.D. Synaptic organization of the basal ganglia. J. Anat. 196 (2000) 527–542.

    Article  Google Scholar 

  2. Koos, T., Tepper, J.M. Inhibitory control of neostriatal projection neurons by GABAergic interneurons. Nat. Neurosci. 2 (1999) 467–472.

    Article  PubMed  CAS  Google Scholar 

  3. Tepper, J.M., Koos, T., Wilson, C.J. GABAergic microcircuits in the neostriatum. TINS 27 (2004) 662–669.

    PubMed  CAS  Google Scholar 

  4. Hjorth, J., Hanna Elias, A., Hellgren Kotaleski, J. The significance of gap junction location in striatal fast spiking interneurons. Neurocomputing 70 (2006) 1887–1891.

    Article  Google Scholar 

  5. Kotaleski, J.H., Plenz, D., Blackwell, K.T. Using potassium currents to solve signal-to-noise problems in inhibitory feedforward networks of the striatum. J. Neurophysiol. 95 (2006) 331–441.

    Article  PubMed  CAS  Google Scholar 

  6. Aertsen, A.M.H.J., Gerstein, G.L., Habib, M.K., Palm, G. Dynamics of neuronal firing correlation: Modulation of “effective connectivity”. J. Neurophysiol. 61 (1989) 900–917.

    PubMed  CAS  Google Scholar 

  7. Palm, G., Aertsen, A.M.H.J., Gerstein, G.L. On the significance of correlations among neuronal spike trains. Biol. Cybern. 59 (1988) 1–11.

    Article  PubMed  CAS  Google Scholar 

  8. Marques de Sa, J.P. Applied Statstistics using SPSS, STATISTICA and MATLAB (2003) Springer.

    Google Scholar 

  9. Galarreta, M., Hestrin, S. Electrical and chemical synapses among parvalbumin fast-spiking GABAergic interneurons in adult mouse neocortex. PNAS 99 (1999) 12438–12443.

    Article  Google Scholar 

  10. Traub, R.D., Kopell, N., Bibbig, A., Buhl, E.H., LeBeau, F.E.N., Whittington, W.A. Gap junctions between interneuron dendrites can enhance synchrony of gamma oscillations in distributed networks. J. Neurosci. 21 (2001) 9478–9486.

    PubMed  CAS  Google Scholar 

  11. Mancilla, J.G., Lewis, T.J., Pinto, D.J., Rinzel, J., Connors, B.W. Synchronization of electrically coupled pairs of inhibitory interneurons in neocortex. J. Neurosci. 27 (2007) 2058–2073.

    Article  PubMed  CAS  Google Scholar 

  12. Blackwell, K.T., Czubayko, U., Plenz, D. Quantitative estimate of synaptic inputs to striatal neurons during up and down states in vitro. J. Neurosci. 23 (2003) 9123–9132.

    PubMed  CAS  Google Scholar 

  13. Schneidman, E, Berry, M.J., Segev, R., Bialek, W. Weak pairwise correlations imply strongly correlated network states in a neural population. Nature 440 (2006) 1007–1012.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hjorth, J., Hedlund, L., Blackwell, K.T., Kotaleski, J.H. (2008). Synchronization Effects in Networks of Striatal Fast Spiking Interneurons – Role of Gap Junctions. In: Wang, R., Shen, E., Gu, F. (eds) Advances in Cognitive Neurodynamics ICCN 2007. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8387-7_13

Download citation

Publish with us

Policies and ethics