Advertisement

History of anthropogenically mediated eutrophication of Lake Peipsi as revealed by the stratigraphy of fossil pigments and molecular size fractions of pore-water dissolved organic matter

  • Aina Leeben
  • Ilmar Toñnno
  • Rene Freiberg
  • Viia Lepane
  • Nicolas Bonningues
  • Natalja Makarõtševa
  • Atko Heinsalu
  • Tiiu Alliksaar
Part of the Developments in Hydrobiology book series (DIHY, volume 199)

Abstract

We investigated stratigraphic changes in fossil pigments and the molecular structure of the UV-absorbing fraction of pore-water dissolved organic matter in a sedimentary record from Lake Peipsi (Estonia/Russia) temporally covering the 20th century. The aims of the study were to define the onset of eutrophication in the lake and to track its course. An attempt was also made to reconstruct lake conditions before the intensive nutrient loading began. Fossil pigment analysis indicated that the eutrophication of the lake started in the 1960s and accelerated in the 1970s. Sedimentary pigments also indicate a continuing tendency of the lake ecosystem towards eutrophy in the 1980s and 1990s. However, changes in the molecular size structure of pore-water dissolved organic matter indicated that the contribution of autochthonous matter to the organic pool of the lake ecosystem had already started to increase around the end of the 1930s. We conclude that this rise was generated by a coincidence of several anthropogenic and natural factors. The pore-water data also show that a slight relative reduction in the autochthonous organic matter took place in the 1990s. A discordance in the paleodata obtained for the beginning of the 20th century complicates clear conclusions about earlier conditions in the lake. On the one hand, the qualitative characteristics of pore-water dissolved organic matter and the low concentration of chlorophyll a indicate that the phytoplankton biomass was low in Lake Peipsi during that period. On the other hand, the concentrations of marker pigments of specific phytoplankton groups are high, comparable with the values in the recent sediments. Possible reasons for the high levels of these pigments in the early 1900s sediments, such as a shift in the preservation conditions of organic substances and their transport from the lake’s catchment, are discussed.

Keywords

Paleolimnology Lake sediments Sedimentary pigments Pore water Dissolved organic matter Lake Peipsi 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Appleby, P. G., P. J. Nolan, D. W. Gifford, M. J. Godfrey, F. Oldfield, N. J. Anderson & R. W. Battarbee, 1986. 210Pb dating by low background gamma counting. Hydrobiologia 141: 21–27.CrossRefGoogle Scholar
  2. Bianchi, T. S., C. Rolff, B. Widbom & R. Elmgren, 2002. Phytoplankton pigments in Baltic Sea seston and sediments: seasonal variability, fluxes, and transformation. Estuarine, Coastal and Shelf Science 55: 369–383.CrossRefGoogle Scholar
  3. Chin, Y.-P., S. J. Traina, C. R. Swank & D. Backhus, 1998. Abundance and properties of dissolved organic matter in pore waters of a freshwater wetland. Limnology and Oceanography 43: 1287–1296.Google Scholar
  4. Heinsalu, A., T. Alliksaar, A. Leeben & T. Nõges, 2007. Sediment diatom assemblages and composition of pore-water dissolved organic matter reflect recent eutrophication history of Lake Peipsi (Estonia/Russia). Hydrobiologia 584: 133–143.CrossRefGoogle Scholar
  5. ISO 8245, 1999. Water quality. Guidelines for the determination of total organic carbon (TOC) and dissolved organic carbon (DOC).Google Scholar
  6. Kupperstein, R. & G. Boyer, 2005. Carotenoid signatures as indicators of cyanobacteria. Retrieved from http://www.esf.edu/chemistry/reu/2005/Russ.Kupperstein.pdf (last accessed 05.05.2007).Google Scholar
  7. Lami, A., A. Marchetto, R. Lo Bianco, P. G. Appleby & P. Guilizzoni, 2000. The last ca 2000 years paleolimnology of Lake Candia (N. Italy): inorganic geochemistry, fossil pigments and temperature time-series analyses. Journal of Limnology 59: 31–46.Google Scholar
  8. Laugaste, R., V. V. Jastremskij & I. Ott, 1996. Phytoplankton of Lake Peipsi-Pihkva: species composition, biomass and seasonal dynamics. Hydrobiologia 338: 49–62.CrossRefGoogle Scholar
  9. Leavitt, P. R., 1993. A review of factors that regulate carotenoid and chlorophyll deposition and fossil pigment abundance. Journal of Paleolimnology 9: 109–127.CrossRefGoogle Scholar
  10. Leavitt, P. R. & D. A. Hodgson, 2001. Sedimentary pigments. In Smol, J. P., H. J. B. Birks & W. M. Last (eds), Tracking Environmental Change Using Lake Sediments, Volume 3: Terrestrial, Algal and Siliceous Indicators. Kluwer Academic Publishers, Dordrecht, 295–325.Google Scholar
  11. Leeben, A., A. Heinsalu, T. Alliksaar & L. Saarse, 2005. A high-resolution spectroscopic study of pore-water dissolved organic matter in annually laminated lake sediments: a new tool for reconstructing eutrophication history. Proceedings of the International Association of Theoretical and Applied Limnology 29: 465–468.Google Scholar
  12. Lepane, V., A. Leeben & O. Malachenko, 2004. Characterization of sediment pore-water dissolved organic matter of lakes by high-performance size exclusion chromatography. Aquatic Sciences 66: 185–194.CrossRefGoogle Scholar
  13. Lepane, V., N. Makarõtševa, N. Bonningues & A. Leeben, 2006. High-performance size exclusion chromatography analysis of lake sediment pore-water dissolved organic matter. In Frimmel, F. H. & G. Abbt-Braun (eds), Humic Substances: Linking Structure to Functions. Proceedings of the 13th Meeting of the International Humic Substances Society, July 30–August 4, 2006. Universität Karlsruhe, Karlsruhe, 209–212.Google Scholar
  14. Loigu, E. & Ü. Leisk, 1996. Water quality of rivers in the drainage basin of Lake Peipsi. Hydrobiologia 338: 25–35.CrossRefGoogle Scholar
  15. McKnight, D. M., E. W. Boyer, P. K. Westerhoff, P. T. Doran, T. Kulbe & D. T. Andersen, 2001. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnology and Oceanography 46: 38–48.Google Scholar
  16. Mori, S. & H. G. Barth, 1999. Size Exclusion Chromatography. Springer Verlag, Berlin, Heidelberg, New York.Google Scholar
  17. Nõges, T. (ed.), 2001. Lake Peipsi: Meteorology, Hydrology, Hydrochemistry. Sulemees Publishers, Tartu.Google Scholar
  18. Nõges, T., J. Haberman, A. Jaani, R. Laugaste, S. Lokk, A. Mäemets, P. Nõges, E. Pihu, H. Starast, T. Timm & T. Virro, 1996. General description of Lake Peipsi-Pihkva. Hydrobiologia 338: 1–9.CrossRefGoogle Scholar
  19. Nõges, T. & P. Nõges, 2006. Indicators and criteria to assess ecological status of the large shallow temperate polymictic lakes Peipsi (Estonia/Russia) and Võrtsjärv (Estonia). Boreal Environmental Research 11: 67–80.Google Scholar
  20. Peuravuori, J. & K. Pihlaja, 1997. Molecular size distribution and spectroscopic properties of aquatic humic substances. Analytica Chimica Acta 337: 133–149.CrossRefGoogle Scholar
  21. Pihu, E. & J. Haberman (eds), 2001. Lake Peipsi: Flora and Fauna. Sulemees Publishers, Tartu.Google Scholar
  22. Quiblier-Llobéras, C., G. Bourdier, C. Amblard & D. Pepin, 1996. A qualitative study of zooplankton grazing in an oligo-mesotrophic lake using phytoplanktonic pigments as organic markers. Limnology and Oceanography 41: 1767–1779.Google Scholar
  23. Rowan, K., 1989. Photosynthetic Pigments of Algae. Cambridge University Press, New York.Google Scholar
  24. Wright H. E. Jr., 1980. Cores of soft lake sediment. Boreas 9:107–114.CrossRefGoogle Scholar
  25. Zhou, Q., S. E. Cabaniss & P. A. Maurice, 2000. Considerations in the use of high-pressure size exclusion chromatography (HPSEC) for determining molecular weights of aquatic humic substances. Water Research 34:3505–3514.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Aina Leeben
    • 1
  • Ilmar Toñnno
    • 2
  • Rene Freiberg
    • 2
  • Viia Lepane
    • 3
  • Nicolas Bonningues
    • 3
    • 4
  • Natalja Makarõtševa
    • 3
  • Atko Heinsalu
    • 5
  • Tiiu Alliksaar
    • 5
  1. 1.Marine Systems InstituteTallinn University of TechnologyTallinnEstonia
  2. 2.Centre for Limnology, Institute of Agricultural and Environmental SciencesEstonian University of Life SciencesRannu, Tartu CountyEstonia
  3. 3.Institute of ChemistryTallinn University of TechnologyTallinnEstonia
  4. 4.DSUJoseph Fourier UniversitySaint-Martin d’HeresFrance
  5. 5.Institute of GeologyTallinn University of TechnologyTallinnEstonia

Personalised recommendations