Breast Cancer: Expression of HER-2 and Epidermal Growth Factor Receptor as Clinical Markers for Response to Targeted Therapy

  • Stanley E. Shackney
  • David R. Emlet
  • Russell Schwartz
  • Kathryn A. Brown
  • Agnese A. Pollice
  • Charles A. Smith
Part of the Methods of Cancer Diagnosis, Therapy and Prognosis book series (HAYAT, volume 1)

In this chapter we consider the relationships that involve both HER-2 and epidermal growth factor receptor (EGFR), with a particular focus on the potential use of these two transmembrane growth factor receptors as biomarkers for predicting response to targeted therapeutic agents directed at either or both of them. Effective clinical use of these receptors as biomarkers depends both on an understanding of their complex biological interactions, and an awareness of the shortcomings of current methods of measuring these two cellular constituents in the clinical setting. Here we will review selected aspects of these two topics, and attempt to develop working hypotheses and organizing principles that might be useful in translating basic knowledge into clinical practice.


Breast Cancer Heterodimer Formation Primary Human Breast Cancer Tyrosine Kinase Inhibitor ZD1839 Autocrine Positive Feedback Loop 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albanell, J., Codony-Servat, J., Rojo, F., Del Campo, J. M., Sauleda, S., Anido, J., Raspall, G., Giralt, J., Rosello, J., Nicholson, R. I., Mendelsohn, J., and Baselga, J. 2001. Activated extracellular signal-regulated kinases: association with epidermal growth factor receptor/transforming growth factor alpha expression in head and neck squamous carcinoma and inhibition by anti-epidermal growth factor receptor treatments. Cancer Res. 61: 6500–6510PubMedGoogle Scholar
  2. Arteaga, C. L., Coronado, E., and Osborne, C. K. 1988. Blockade of the epidermal growth factor receptor inhibits transforming growth factor alpha-induced but not estrogen-induced growth of hormone-dependent human breast cancer. Mol. Endocrinol. 2: 1064–1069PubMedCrossRefGoogle Scholar
  3. Baselga, J., Albanell, J., Ruiz, A., Lluch, A., Gascon, P. , Guillem, V. , Gonzalez, S., Sauleda, S., Marimon, I., Tabernero, J. M., Koehler, M. T., and Rojo, F. 2005. Phase II and tumor pharmacody-namic study of gefitinib in patients with advanced breast cancer. J. Clin. Oncol. 23: 5323–5333PubMedCrossRefGoogle Scholar
  4. Cappuzzo, F., Varella-Garcia, M., Shigematsu, H., Domenichini, I., Bartolini, S., Ceresoli, G. L., Rossi, E., Ludovini, V., Gregorc, V. , Toschi, L., Franklin, W. A., Crino, L., Gazdar, A. F., Bunn, P. A., Jr., and Hirsch, F. R. 2005. Increased HER2 gene copy number is associated with response to gefitinib therapy in epidermal growth factor receptor-positive non-small-cell lung cancer patients. J. Clin. Oncol. 23: 5007–5018PubMedCrossRefGoogle Scholar
  5. Daniele, L., Macri, L., Schena, M., Dongiovanni, D., Bonello, L., Armando, E., Ciuffreda, L., Bertetto, O., Bussolati, G., and Sapino, A. 2007. Predicting gefitinib responsiveness in lung cancer by fluorescence in situ hybridization/chromogenic in situ hybridization analysis of EGFR and HER2 in biopsy and cytology specimens. Mol. Cancer Ther. 6: 1223–1229PubMedCrossRefGoogle Scholar
  6. DiGiovanna, M. P., Stern, D. F., Edgerton, S. M., Whalen, S. G., Moore, D., and Thor, A. D. 2005. Relationship of epidermal growth factor receptor expression to ErbB-2 signaling activity and prognosis in breast cancer patients. J. Clin. Oncol. 23: 1152–1160PubMedCrossRefGoogle Scholar
  7. Emlet, D. R., Schwartz, R., Brown, K. A., Pollice, A. A., Smith, C. A., and Shackney, S. E. 2006. HER2 expression as a potential marker for response to therapy targeted to the EGFR. Br. J. Cancer 94: 1144–1153PubMedCrossRefGoogle Scholar
  8. Engelman, J. A., and Cantley, L. C. 2006. The role of the ErbB family members in non-small cell lung cancers sensitive to epidermal growth factor receptor kinase inhibitors. Clin. Cancer Res. 12: 4372s–4376sPubMedCrossRefGoogle Scholar
  9. Erjala, K., Sundvall, M., Junttila, T. T., Zhang, N., Savisalo, M., Mali, P. , Kulmala, J., Pulkkinen, J., Grenman, R., and Elenius, K. 2006. Signaling via ErbB2 and ErbB3 associates with resistance and epidermal growth factor receptor (EGFR) amplification with sensitivity to EGFR inhibitor gefitinib in head and neck squamous cell carcinoma cells. Clin. Cancer Res. 12: 4103–4111PubMedCrossRefGoogle Scholar
  10. Graus-Porta, D., Beerli, R. R., Daly, J. M., and Hynes, N. E. 1997. ErbB-2, the preferred heterodimeriza-tion partner of all ErbB receptors, is a mediator of lateral signaling. Embo J. 16: 1647–1655PubMedCrossRefGoogle Scholar
  11. Hendriks, B. S., Opresko, L. K., Wiley, H. S., and Lauffenburger, D. 2003. Coregulation of epidermal growth factor receptor/human epidermal growth factor receptor 2 (HER2) levels and locations: quantitative analysis of HER2 overexpres-sion effects. Cancer Res. 63: 1130–1137PubMedGoogle Scholar
  12. Hirata, A., Hosoi, F., Miyagawa, M., Ueda, S., Naito, S., Fujii, T., Kuwano, M., and Ono, M. 2005. HER2 overexpression increases sensitivity to gefitinib, an epidermal growth factor receptor tyrosine kinase inhibitor, through inhibition of HER2/HER3 heterodimer formation in lung cancer cells. Cancer Res. 65: 4253–4260PubMedCrossRefGoogle Scholar
  13. Hirsch, F. R., Varella-Garcia, M., Cappuzzo, F., McCoy, J., Bemis, L., Xavier, A. C., Dziadziuszko, R., Gumerlock, P., Chansky, K., West, H., Gazdar, A. F., Crino, L., Gandara, D. R., Franklin, W. A., and Bunn, P. A., Jr. 2007. Combination of EGFR gene copy number and protein expression predicts outcome for advanced non-small-cell lung cancer patients treated with gefitinib. Ann. Oncol. 18: 752–760PubMedCrossRefGoogle Scholar
  14. Janocko, L. E., Brown, K. A., Smith, C. A., Gu, L. P., Pollice, A. A., Singh, S. G., Julian, T., Wolmark, N., Sweeney, L., Silverman, J. F., and Shackney, S. E. 2001. Distinctive patterns of Her-2/neu, c-myc, and cyclin D1 gene amplification by fluorescence in situ hybridization in primary human breast cancers. Cytometry 46: 136–149PubMedCrossRefGoogle Scholar
  15. Jones, H. E., Gee, J. M., Hutcheson, I. R., Knowlden, J. M., Barrow, D., and Nicholson, R. I. 2006. Growth factor receptor interplay and resistance in cancer. Endocr. Relat. Cancer 13: S45–S51PubMedCrossRefGoogle Scholar
  16. Kim, C., Jeong, J., Geyer, C., Romond, E., Mejia-Mejia, O., Mamounas, E., Wckerham, D., Constantino, J., and Wolmark, N. 2007. Benefit from adjuvant trastuzumab may not be confined to patients with IHC 3+ and/or FISH-positive tumors. J. Clin Oncol, 25: 5 sGoogle Scholar
  17. Knowlden, J. M., Hutcheson, I. R., Jones, H. E., Madden, T., Gee, J. M., Harper, M. E., Barrow, D., Wakeling, A. E., and Nicholson, R. I. 2003. Elevated levels of epidermal growth factor receptor/c-erbB2 heterodimers mediate an autocrine growth regulatory pathway in tamoxifen-resistant MCF-7 cells. Endocrinology 144: 1032–1044PubMedCrossRefGoogle Scholar
  18. Lenferink, A. E., Simpson, J. F., Shawver, L. K., Coffey, R. J., Forbes, J. T., and Arteaga, C. L. 2000. Blockade of the epidermal growth factor receptor tyrosine kinase suppresses tum-origenesis in MMTV/Neu + MMTV/TGF-alpha bigenic mice. Proc. Natl. Acad. Sci. U. S. A. 97: 9609–9614PubMedCrossRefGoogle Scholar
  19. Moasser, M. M., Basso, A., Averbuch, S. D., and Rosen, N. 2001. The tyrosine kinase inhibitor ZD1839 (“Iressa”) inhibits HER2-driven signaling and suppresses the growth of HER2-over expressing tumor cells. Cancer Res. 61: 7184–7188PubMedGoogle Scholar
  20. Moulder, S. L., Yakes, F. M., Muthuswamy, S. K., Bianco, R., Simpson, J. F., and Arteaga, C. L. 2001. Epidermal growth factor receptor (HER1) tyrosine kinase inhibitor ZD1839 (Iressa) inhibits HER2/neu (erbB2)-overexpressing breast cancer cells in vitro and in vivo. Cancer Res. 61: 8887–8895PubMedGoogle Scholar
  21. Nakamura, H., Takamori, S., Fujii, T., Ono, M., Yamana, H., Kuwano, M., and Shirouzu, K. 2005. Cooperative cell-growth inhibition by combination treatment with ZD1839 (Iressa) and trastuzumab (Herceptin) in non-small-cell lung cancer. Cancer Lett. 2301: 33–46CrossRefGoogle Scholar
  22. Nicholson, R. I., Hutcheson, I. R., Jones, H. E., Hiscox, S. E., Giles, M., Taylor, K. M., and Gee, J. M. 2007. Growth factor signalling in endocrine and anti-growth factor resistant breast cancer. Rev. Endocr. Metab. Disord. 8: 241–253PubMedCrossRefGoogle Scholar
  23. Normanno, N., and Ciardiello, F. 1997. EGF-related peptides in the pathophysiology of the mammary gland. J. Mammary Gland Biol. Neoplasia 2: 143–151PubMedCrossRefGoogle Scholar
  24. Onn, A., Correa, A. M., Gilcrease, M., Isobe, T., Massarelli, E., Bucana, C. D., O'Reilly, M. S., Hong, W. K., Fidler, I. J., Putnam, J. B., and Herbst, R. S. 2004. Synchronous overexpression of epidermal growth factor receptor and HER2-neu protein is a predictor of poor outcome in patients with stage I non-small cell lung cancer. Clin. Cancer Res. 10: 136–143PubMedCrossRefGoogle Scholar
  25. Ouyang, X., Gulliford, T., Huang, G., and Epstein, R. J. 1999. Transforming growth factor-alpha short-circuits downregulation of the epidermal growth factor receptor. J. Cell Physiol. 179: 52–57PubMedCrossRefGoogle Scholar
  26. Robertson, K. W., Reeves, J. R., Smith, G., Keith, W. N., Ozanne, B. W., Cooke, T. G., and Stanton, P. D. 1996. Quantitative estimation of epidermal growth factor receptor and c-erbB-2 in human breast cancer. Cancer Res. 56: 3823–3830PubMedGoogle Scholar
  27. Rubin Grandis, J., Melhem, M. F., Gooding, W. E., Day, R., Holst, V. A., Wagener, M. M., Drenning, S. D., and Tweardy, D. J. 1998. Levels of TGF-alpha and EGFR protein in head and neck squamous cell carcinoma and patient survival. J. Natl. Cancer Inst. 90: 824–832PubMedCrossRefGoogle Scholar
  28. Shackney, S., Emlet, D. R., Pollice, A., Smith, C., Brown, K., and Kociban, D. 2006. Guidelines for improving the reproducibility of quantitative multiparameter immunofluorescence measurements by laser scanning cytometry on fixed cell suspensions from human solid tumors. Cytometry B Clin. Cytom. 70: 10–19PubMedGoogle Scholar
  29. Shackney, S. E., and Shankey, T. V. 1997. Common patterns of genetic evolution in human solid tumors. Cytometry 29: 1–27PubMedCrossRefGoogle Scholar
  30. Shackney, S. E., Pollice, A. A., Smith, C. A., Janocko, L. E., Sweeney, L., Brown, K. A., Singh, S. G., Gu, L., Yakulis, R., and Lucke, J. F. 1998. Intracellular coexpression of epidermal growth factor receptor, Her-2/neu, and p21ras in human breast cancers: evidence for the existence of distinctive patterns of genetic evolution that are common to tumors from different patients. Clin. Cancer Res. 4: 913–928PubMedGoogle Scholar
  31. Tovey, S. M., Reeves, J. R., Stanton, P., Ozanne, B. W., Bartlett, J. M., and Cooke, T. G. 2006. Low expression of HER2 protein in breast cancer is biologically significant. J. Pathol. 210: 358–362PubMedCrossRefGoogle Scholar
  32. Xia, W., Lau, Y. K., Zhang, H. Z., Xiao, F. Y. , Johnston, D. A., Liu, A. R., Li, L., Katz, R. L., and Hung, M. C. 1999. Combination of EGFR, HER-2/neu, and HER-3 is a stronger predictor for the outcome of oral squamous cell carcinoma than any individual family members. Clin. Cancer Res. 5: 4164–4174PubMedGoogle Scholar
  33. Xie, W., Chow, L. T., Paterson, A. J., Chin, E., and Kudlow, J. E. 1999. Conditional expression of the ErbB2 oncogene elicits reversible hyper-plasia in stratified epithelia and up-regulation of TGFalpha expression in transgenic mice. Oncogene 18: 3593–3607PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2008

Authors and Affiliations

  • Stanley E. Shackney
    • 1
  • David R. Emlet
    • 1
  • Russell Schwartz
    • 1
  • Kathryn A. Brown
    • 2
  • Agnese A. Pollice
    • 2
  • Charles A. Smith
    • 2
  1. 1.Pittsburgh
  2. 2.Laboratory of Cancer Cell Biology and Genetics, Department of Human OncologyAllegheny General HospitalPittsburgh

Personalised recommendations