Enzymes are the catalysts responsible for cell metabolism. Cells from different sources have been, are, and will continue to be the main source of enzymes. Enzymes can be produced from any living organism, either by extracting them from their cells or by recovering them from cell exudates.


Enzyme Production High Pressure Liquid Chromatography Cell Disruption Catabolite Repression Microbial Enzyme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbott NL, Blankschtein D, Hatton TA (1990) On protein partitioning in two-phase aqueous poly-mer systems. Bioseparation 1(3-4):191-225Google Scholar
  2. Acevedo F, Cooney CL (1973) Penicillin amidase production by Bacillus megaterium. Biotechnol Bioeng 15(3):493-503CrossRefGoogle Scholar
  3. Acevedo F, Gentina JC (1996) Development of a pilot-plant fermentation process for the produc-tion of yeast lactase. Ann NY Acad Sci 799:559-562CrossRefGoogle Scholar
  4. Acevedo F, Gentina JC, Illanes A (eds) (2004) Fundamentos de ingeniería bioquímica, 2aedici ón. Ed. Universitarias Valparaíso, Valparaíso, 347 ppGoogle Scholar
  5. Adlercreutz P, Clapes P (1991) Catalytic properties of alpha-chymotrypsin in organic media. Bio-med Biochim Acta 50(10-11):55-60Google Scholar
  6. Adlercreutz P, Clapes P, Mattiasson B (1990) Enzymatic peptide synthesis in organic media. Ann NY Acad Sci 613(1):517-520CrossRefGoogle Scholar
  7. Aehle W (2003) Enzymes in industry: production and applications. Wiley-VCH, Weinheim, 484 ppGoogle Scholar
  8. Aehle W, Sobek H, Amory A et al. (1993) Rational protein engineering and industrial application: structure prediction by homology and rational design of protein-variants with improved ‘washing performance’ - the alkaline protease from Bacillus alcalophilus. J Biotechnol 28(1):31-40CrossRefGoogle Scholar
  9. Aguilara O, Albiterb V, Serrano-Carre ón L et al. (2006) Direct comparison between ion-exchange chromatography and aqueous two-phase processes for the partial purification of penicillin acylase produced by E. coli. J Chromat B 835(1-2):77-83CrossRefGoogle Scholar
  10. Ahuja S (2003) Chromatography and separation science. Academic Press, Boston, 250 ppGoogle Scholar
  11. Aiba S, Humphrey AE, Millis NF (1973) Biochemical engineering, 2nd edn. Academic Press, New York, 434 ppGoogle Scholar
  12. Akinrefon OA (1969) Factors affecting the production of extracellular pectolytic enzymes by Phy-tophthora palmivora. Ann Bot 33:439-450Google Scholar
  13. Albertsson PA, Johanson G, Tjerneld F (1990) Aqueous two-phase separations In: Asenjo JA (ed). Separation processes in biotechnology. Marcel Dekker, New York, pp 287-328Google Scholar
  14. Alfani F, Cantarella M, Cirielli G et al. (1984) The use of synthetic polymers for preventing enzyme thermal inactivation. Biotechnol Lett 6(6):345-350CrossRefGoogle Scholar
  15. Altamirano C, Paredes C, Illanes A et al. (2004) Strategies for fed-batch cultivation of t-PA pro-ducing CHO cells: substitution of glucose and glutamine and rational design of culture medium. J Biotechnol 110(2):171-179CrossRefGoogle Scholar
  16. Altamirano C, Illanes A, Canessa R et al. (2006) Specific nutrient supplementation of defined serum-free medium for the improvement of CHO cells growth and t-PA production. Elect J Biotechnol 9(1):61-67CrossRefGoogle Scholar
  17. Amrane A, Prigent Y (1998) Effect of culture conditions of Kluyveromyces marxianus on its au-tolysis, and process optimization. J Bioproc Biosys Eng 18(5):383-388Google Scholar
  18. Andersson E, Hahn-Hagerdal E (1990) Bioconversions in aqueous two-phase systems. Enzyme Microb Technol 12(4):242-254CrossRefGoogle Scholar
  19. Ann é J, Eyssen H, De Somer P (1974) Formation and regeneration of Penicillium chrysogenum protoplasts. Arch Microbiol 98(1):159-166CrossRefGoogle Scholar
  20. Anonymous (1999) Protein purification handbook, Edition AB 18-1132-29. Amersham Pharmacia Biotech AB, Uppsala, 97 ppGoogle Scholar
  21. Ansorge MB, Kula MR (2000) Investigating expression systems for the stable large-scale produc-tion of recombinant L-leucine-dehydrogenase from Bacillus cereus in Escherichia coli. J Appl Microbiol Biotechnol 53(6):668-673CrossRefGoogle Scholar
  22. Arbige MV, Pitcher WH (1989) Industrial enzymology: a look into the future. TIBTECH 7:330-335Google Scholar
  23. Aroca G, Z ú ñiga ME (2004) Bioseparaciones. In: Acevedo F, Gentina JC, Illanes A (eds). Funda-mentos de ingeniería bioquímica, 2aedici ón. Universitarias de Valparaíso, Valparaíso, pp 283-347Google Scholar
  24. Asenjo JA (1990) Separation processes in biotechnology. Marcel Dekker, New York, 824 ppGoogle Scholar
  25. Asenjo JA, Andrews BA (1990) Enzymatic cell lysis for product release. Bioproc Technol 9:143-175Google Scholar
  26. Asenjo JA, Parrado J, Andrews BA (1991) Rational design of purification processes for recombi-nant proteins. Ann NY Acad Sci 646:334-356CrossRefGoogle Scholar
  27. Asenjo JA, Ventom AM, Huang RB et al. (1993) Selective release of recombinant protein particles (VLPs) from yeast using a pure lytic glucanase enzyme. Bio/Technology 11:214-217CrossRefGoogle Scholar
  28. Ashie INA, Sorensen TL, Nielsen PM (2002) Effects of papain and a microbial enzyme on meat proteins and beef tenderness. J Food Sci 67(6):2138-2142CrossRefGoogle Scholar
  29. Askonas BA (1951) The use of organic solvents at low temperature for the separation of enzymes: application to aqueous rabbit muscle extract. Biochem J 48:42-48Google Scholar
  30. Atha DH, Ingham KC (1981) Mechanism of precipitation of proteins by polyethylene glycols. Analysis in terms of excluded volume. J Biol Chem 256(23):12108-12117Google Scholar
  31. Augenstein DC, Thrasher K, Sinskey AJ et al. (1974) Optimization in the recovery of a labile intracellular enzyme. Biotechnol Bioeng 16:1433-1447CrossRefGoogle Scholar
  32. Avgerinos CG, Drapeau D, Socolow JS et al. (1990) Spin filter perfusion system for high den-sity cell culture: production of recombinant urinary type plasminogen activator in CHO cells. Bio/Technology 8:54-58CrossRefGoogle Scholar
  33. Bachhawat N, Gowda LR, Bhat SG (1996) Single step method of preparation of detergent perme-abilized Kluyveromyces fragilis for lactose hydrolysis. Proc Biochem 31(1):21-25CrossRefGoogle Scholar
  34. Bahar T, Tuncel A (2004) Concanavalin A attached poly(p-chloromethylstyrene) beads for gly-coenzyme separation. J Appl Polym Sci 92(4):2116-2124CrossRefGoogle Scholar
  35. Bailey JE, Ollis DF (1977) Biochemical engineering fundamentals. McGraw-Hill, New York, 753 ppGoogle Scholar
  36. Bailey MJ, Siika-aho M (1988) Production of microbial rennin. Biotechnol Lett 10(3):161-166CrossRefGoogle Scholar
  37. Balandrin, MF, Klocke JA, Wurtele ES et al. (1985) Natural plant chemicals: sources of industrial and medicinal materials. Science 228:1154-60CrossRefGoogle Scholar
  38. Balasundaram B, Pandit AB (2001) Significance of location of enzymes on their release during microbial cell disruption. Biotechnol Bioeng 75(5):607-614CrossRefGoogle Scholar
  39. Baldwin CV, Moo-Young M (1991a) Disruption of a filamentous fungal organism (N. sitophila) us-ing a bead mill of novel design I. General disruption characteristics. Biotechnol Tech 5(5):331-336Google Scholar
  40. Baldwin CV, Moo-Young M (1991b) Disruption of a filamentous fungal organism (N. sitophila) using a bead mill of novel design II. Increased recovery of cellulases. Biotechnol Tech 5(5):337-342Google Scholar
  41. Banik RM, Santhiagu A, Kanari B et al. (2003) Technological aspects of extractive fermentation using aqueous two-phase systems. World J Microbiol Biotechnol 19(4):337-348CrossRefGoogle Scholar
  42. Bansal-Mutalik R, Gaikar VG (2003) Cell permeabilization for extraction of penicillin acylase from Escherichia coli by reverse micellar solutions. Enzyme Microb Technol 32(1-2):14-26CrossRefGoogle Scholar
  43. Barberis S, Gentina JC (1998) Effect of dissolved oxygen levels on lactase production by Kluyveromyces fragilis. J Chem Technol Biotechnol 73:71-73CrossRefGoogle Scholar
  44. Barnes LM, Bentley CM, Dickson AJ (2000) Advances in animal cell recombinant protein pro-duction: GS-NS0 expression system. Cytotechnology 32(2):109-123CrossRefGoogle Scholar
  45. Barredo JL (ed) (2005) Microbial enzymes and biotransformations. Humana Press Inc, Totowa, 350 ppGoogle Scholar
  46. Baur X, Sander I, Jansen A et al. (1994) Are amylases in bakery products and flour potential food allergens? Schweiz Med Wochenschr 124(20):846-851Google Scholar
  47. Becerra M, Cerdan E, Gonzalez Siso MI (1997) Heterologous Kluyveromyces lactis beta-galactosidase production and release by Saccharomyces cerevisiae osmotic-remedial ther-mosensitive autolytic mutants. Biochim Biophys Acta 1335(3):235-241Google Scholar
  48. Bertoldo C, Antranikian G (2002) Starch-hydrolyzing enzymes from thermophilic archaea and bacteria. Curr Opin Chem Biol 6:151-160CrossRefGoogle Scholar
  49. Bezerra RP, Borba FKSL, Moreira KA et al. (2006) Extraction of amylase from fermentation broth in poly(ethylene glycol) salt aqueous two-phase system. Braz Arch Biol Technol 49(4):547-555CrossRefGoogle Scholar
  50. Bhargava S, Wenger KS, Rane K et al. (2005) Effect of cycle time on fungal morphology, broth rhe-ology, and recombinant enzyme productivity during pulsed addition of limiting carbon source. Biotechnol Bioeng 89(5):524-529CrossRefGoogle Scholar
  51. Bierau H, Hinton RJ, Lyddiatt A (2001) Direct process integration of cell disruption and fluidised bed adsorption in the recovery of labile microbial enzymes. Bioseparation 10(1-3):73-85CrossRefGoogle Scholar
  52. Bilton GL (1984) Enzyme-containing digestive aid compositions. US Patent 4447412, 5 Au-gust 1984Google Scholar
  53. Blanch HW, Clark DS (1997) Biochemical engineering. Marcel Dekker, New York, 702 ppGoogle Scholar
  54. Bogar B, Szakacs G, Tengerdy RP et al. (2002) Production of alpha-amylase with Aspergillus oryzae on spent brewing grain by solid substrate fermentation. Appl Biochem Biotechnol 102-103 (1-6):453-461CrossRefGoogle Scholar
  55. Bogar B, Szakacs G, Linden JC et al. (2003) Optimization of phytase production by solid substrate fermentation. J Ind Microbiol Biotechnol 30(3):183-189Google Scholar
  56. Bojorge N, Valdman B, Acevedo F et al. (1999) A semi-structured model for the growth and β-galactosidase production by fed-batch fermentation with Kluyveromyces marxianus. Bioproc Eng 21:313-318Google Scholar
  57. Bommarius AS, Riebel BR (2004) Biocatalysis: fundamentals and applications. Wiley-VCH, Weinheim, 611 ppGoogle Scholar
  58. Bond M, Jankowski M, Patel H et al. (1998). Biochemical characterization of recombinant factor IX. Semin Hematol 35:11-17Google Scholar
  59. Bonekamp FJ, Oosterom J (1994) On the safety of Kluyveromyces lactis - a review. J Appl Micro-biol Biotechnol 41(1):1-3Google Scholar
  60. Breccia JD, Mor án AC, Castro GR et al. (1998) Thermal stabilization by polyols of β-xylanase from Bacillus amyloliquefaciens. J Chem Technol Biotechnol 71(3):241-245CrossRefGoogle Scholar
  61. Breddam K, Beenfeldt T (1991) Acceleration of yeast autolysis by chemical methods for produc-tion of intracellular enzymes. J Appl Microbiol Biotechnol 35(3):323-329Google Scholar
  62. Brocklehurst K, Courey AJ, Gul S et al. (2004) Affinity and immunoaffinity chromatography. In: Simpson RJ (ed). Purifying proteins for proteomics: a laboratory manual. CSHL Press, Cold Spring Harbor, pp 221-274Google Scholar
  63. Brown AK, Kaul A, Varley J (1999a) Continuous foaming for protein recovery. Part I. Recovery of β-casein. Biotechnol Bioeng 62(3):2787-290Google Scholar
  64. Brown AK, Kaul A, Varley J (1999b) Continuous foaming for protein recovery. Part II. Selective recovery of proteins from binary mixtures. Biotechnol Bioeng 62(3):291-300CrossRefGoogle Scholar
  65. Bryan PN (2000) Protein engineering of subtilisin. Biochim Biophys Acta 1543:223-238Google Scholar
  66. Bryjak J (1995) Storage stabilization of enzyme activity by poly(ethyleneimine). J Bioproc Biosys Eng 13(4):177-181Google Scholar
  67. Budtz P (1994) Microbial rennets for cheese making. Novo-Nordisk Technical Report, A-6045aGoogle Scholar
  68. Burgess RR (1969) A new method for the large scale purification of Escherichia coli deoxyribonucleicacid-dependent ribonucleic acid polymerase. J Biol Chem 244(22):6160-6167Google Scholar
  69. Cao L (2005) Carrier-bound immobilized enzymes. Principles, application and design. Wiley-VCH, Weinheim, 563 ppCrossRefGoogle Scholar
  70. Castell OK, Allender CJ, Barrow DA (2006) Novel biphasic separations utilising highly selective molecularly imprinted polymers as biorecognition solvent extraction agents. Biosens Bioelec-tron 22(4):526-533CrossRefGoogle Scholar
  71. Cereghino GPL, Cereghino JL, Ilgen C et al. (2002) Production of recombinant proteins in fer-menter cultures of the yeast Pichia pastoris. Curr Opin Biotechnol 13:329-332CrossRefGoogle Scholar
  72. Chan WK, Belfort M, Belfort G (1991) Protein overproduction in Escherichia coli: RNA stabi-lization, cell disruption and recovery with a cross-flow microfiltration membrane. J Biotechnol 18 (3):225-242CrossRefGoogle Scholar
  73. Chang B, Su Z (2005) Kinetic model for simultaneous cell disruption and aqueous two-phase extraction. J Chem Technol Biotechnol 81(3):454-460CrossRefGoogle Scholar
  74. Chaniotakis NA (2004) Enzyme stabilization strategies based on electrolytes and polyelectrolytes for biosensor applications. J Anal Bioanal Chem 378(1):89-95CrossRefGoogle Scholar
  75. Chaplin MF, Bucke C (1990) Enzyme technology. Cambridge University Press, Cambridge, 264 ppGoogle Scholar
  76. Charcosset C (2006) Membrane processes in biotechnology: an overview. Biotechnol Adv 24(5):482-492CrossRefGoogle Scholar
  77. Chauthaiwale J, Rao M (1994) Production and purification of extracellular D-xylose isomerase from an alkaliphilic, thermophilic Bacillus sp. Appl Environ Microbiol 60(12):4495-4499Google Scholar
  78. Chen JP, Chen YC (1996) Improvement of cell lysis activity of immobilized lysozyme with re-versibly soluble-insoluble polymer as carrier. Biotechnol Tech 10(10):749-754CrossRefGoogle Scholar
  79. Chen R (2001) Enzyme engineering: rational design versus directed evolution. TIBTECH 19 (1):13-14Google Scholar
  80. Cheng S, Wei D, Song Q (2006) Extraction of penicillin G acylase from Alcaligenes faecalis in recombinant Escherichia coli with cetyl-trimethylammoniumbromide. Biochem Eng J 32(1)56-60CrossRefGoogle Scholar
  81. Chi WK, Ku CH, Chang CC (1994) Two-step cell disruption for the extraction of membrane-associated recombinant protein from Saccharomyces cerevisiae. Ann NY Acad Sci 721(1):365-373CrossRefGoogle Scholar
  82. Chisti Y, Moo-Young M (1986) Disruption of microbial cells for intracellular products. Enzyme Microb Technol 8:194-204CrossRefGoogle Scholar
  83. Choi H, Laleye L, Amantea GF et al. (1997) Release of aminopeptidase from Lactobacillus casei sp. casei by cell disruption in a microfluidizer. Biotechnol Tech 11(7):451-453CrossRefGoogle Scholar
  84. Chu L, Robinson DK (2001) Industrial choices for protein production by large-scale cell culture. Curr Opin Biotechnol 12:180-187CrossRefGoogle Scholar
  85. Cimino C, Vairo-Cavalli S, Spina F et al. (2006) Callus culture for biomass production of milk thistle as a potential source of milk clotting peptidases. Elect J Biotechnol 9(3):237-240Google Scholar
  86. Clapes P, Torres JL, Adlercreutz P (1995). Enzymatic peptide synthesis in low water content sys-tems: preparative enzymatic synthesis of [Leu]and [Met]-enkephalin derivatives. Bioorg Med Chem 3(3):245-255CrossRefGoogle Scholar
  87. Clark DS (2004) Characteristics of nearly dry enzymes in organic solvents: implications for bio-catalysis in the absence of water. Phil Trans R Soc Lond B 359:1299-1307CrossRefGoogle Scholar
  88. Clarke PH, Brammar WJ (1964) Regulation of bacterial enzyme synthesis by induction and repres-sion. Nature 203:1153-1155CrossRefGoogle Scholar
  89. Clonis YD (1987) Large-scale affinity chromatography. Bio/Technology 5:1290-1293CrossRefGoogle Scholar
  90. Clonis YD (2006) Affinity chromatography matures as bioinformatic and combinatorial tools de-velop. J Chromat A 1101(1-2):1-24CrossRefGoogle Scholar
  91. Conrad KM, Mast MG, Ball H et al. (1993) Concentration of liquid egg white by vacuum evapo-ration and reverse osmosis. J Food Sci 58(5):1017-1020CrossRefGoogle Scholar
  92. Cordes RM, Sims WB, Glatz CE (1990) Precipitation of nucleic acids with poly(ethy1eneimine). Biotechnol Prog 6:283-285CrossRefGoogle Scholar
  93. Coulon D, Cabanne C, Fitton V et al. (2004) Penicillin acylase purification with the aid of hy-drophobic charge induction chromatography. J Chromat B 808(1):111-115CrossRefGoogle Scholar
  94. Craig RP (1975) The quantitative evaluation of the use of oral proteolytic enzymes in the treatment of sprained ankles. Injury 6(4):313-316CrossRefGoogle Scholar
  95. Cullen D, Gray GL, Wilson LJ (1987) Controlled expression and secretion of bovine chymosin in Aspergillus nidulans. Bio/Technology 5:369-376CrossRefGoogle Scholar
  96. Cumming RH, Iceton G (2001) Cell disintegration and extraction techniques. In: Roe S (ed). Pro-tein purification techniques: a practical approach. Oxford University Press, Oxford, pp 83-110Google Scholar
  97. Cunha T, Aires-Barros R (2002) Large-scale extraction of proteins. Mol Biotechnol 20(1):29-40CrossRefGoogle Scholar
  98. Currie JA, Dunnill P, Lilly MD (1972) Release of protein from bakers’ yeast (Saccharomyces cerevisiae) by disruption in an industrial agitator mill. Biotechnol Bioeng 14(5):725-736CrossRefGoogle Scholar
  99. Cutler P (2004) Protein purification protocols. Humana Press, Totowa, 496 ppGoogle Scholar
  100. Darbyshire J (1981) Large-scale enzyme extraction and recovery. In: Wiseman A (ed). Topics in enzyme and fermentation biotechnology 5. Ellis Horwod, Chichester, pp 147-186Google Scholar
  101. Dechechi EC, Martins MI, Maciel Filho R et al. (1997) Dynamic modelling and advanced predic-tive control of a continuous process of enzyme purification. Braz J Chem Eng 14(4):425-430CrossRefGoogle Scholar
  102. Decleire M, De Cat W, van Huynh N (1987) Comparison of various permeabilization treatments on Kluyveromyces by determining in situ beta-galactosidase activity. Enzyme Microb Technol 9 (5):300-302CrossRefGoogle Scholar
  103. Demain AL (1968) Regulatory mechanisms and industrial production of microbial metabolites. Lloydia 31:395-418Google Scholar
  104. de Miguel Bouzas T, Barros-Velazquez J, Gonzalez Villa T (2006) Industrial applications of hy-perthermophilic enzymes: a review. Prot Pept Lett 13(7):645-651CrossRefGoogle Scholar
  105. de Palma Revillion JP, Brandelli A, Z áchia Ayub MA (2003) Production of yeast extract from whey using Kluyveromyces marxianus. Braz Arch Biol Technol 46(1):121-127Google Scholar
  106. Dixon M, Webb EC (1961) Enzyme fractionation by salting-out: a theoretical note. Adv Prot Chem 16:197-219CrossRefGoogle Scholar
  107. Dobson MJ, Roberts NA, Tuite MF et al. (1983) Efficient synthesis of enzymatically active calf chymosin in Saccharomyces cerevisiae. Gene 24(1):1-14CrossRefGoogle Scholar
  108. Doelle HW (1994) Microbial process development. World Scientific, Singapore, pp 241-276Google Scholar
  109. Dolia SC, Gaikar VG (2006) Aqueous to-phase partitioning of glucose isomerase from Actino-planes missouriensis in the presence of PEG-derivatives and its immobilization on chitosan beads. Separ Sci Technol 41(12):2807-2823CrossRefGoogle Scholar
  110. Domínguez A, Fermi ñ án E, S ánchez M et al. (1998) Non-conventional yeasts as hosts for heterol-ogous protein production. Int Microbiol 1:131-142Google Scholar
  111. Drapeau GR, Boily Y, Houmard J (1972) Purification and properties of an extracellular protease of Staphylococcus aureus. The J Biol Chem 247(20):6720-6726Google Scholar
  112. Due ñas R, Tengerdy RP, Guti érrez-Correa M (1995) Cellulase production by mixed fungi in solid-substrate fermentation of bagasse. World J Microbiol Biotechnol 11(3):333-337CrossRefGoogle Scholar
  113. Dunn-Coleman NS, Bloebaum P, Berka RM et al. (1991) Commercial levels of chymosin produc-tion by Aspergillus. Bio/Technology 9:976-981CrossRefGoogle Scholar
  114. Duxbury D (1989) Alternate-source milk coagulant enzyme developed by rDNA technology. Showcase USA:117-119Google Scholar
  115. Dworschack RG, Wickerham LJ (1961) Production of extracellular and total invertase by Candida utilis, Saccharomyces cerevisiae, and other yeasts. Appl Microbiol 9(4):291-294Google Scholar
  116. Egli T, van Dijken JP, Veenhuis M et al. (1980) Methanol metabolism in yeasts: regulation of the synthesis of catabolic enzymes. Arch Microbiol 124(2-3):115-121CrossRefGoogle Scholar
  117. Ehle H, Horn A (1990) Immunoaffinity chromatography of enzymes. Bioseparation 1(2):97-110Google Scholar
  118. Ehsani N, Nystrom M, Ojamo H et al. (1996) Separation of enzymes produced by Trichoderma reesei with hydrophobic ultrafiltration membrane. Proc Biochem 31(3):253-263CrossRefGoogle Scholar
  119. Ekici P, Backleh-Sohrt M, Parlar H (2005) High efficiency enrichment of total and single whey proteins by pH controlled foam fractionation. Internat J Food Sci Nutr 56(3):223-229CrossRefGoogle Scholar
  120. El-Mansi EMT, Bryce CFA, Demain AL et al. (2007) Fermentation microbiology and biotechnol-ogy, 2nd edn. CRC Taylor & Francis, Boca Raton, 552 ppGoogle Scholar
  121. Emmons DB, Binns M (1990) Cheese yield experiments and proteolysis by milk-clotting enzymes. J Dairy Sci 73(8):2028-2043Google Scholar
  122. Emtage JS, Angal S, Doel MT et al. (1983) Synthesis of calf prochymosin (prorennin) in Es-cherichia coli. Proc Natl Acad Sci USA 80(12):3671-3675CrossRefGoogle Scholar
  123. Epstein W, Rothman-Denes LB, Hesse J (1975) Adenosine 3 :5 -cyclic monophosphate as media-tor of catabolite repression in Escherichia coli. Proc Natl Acad Sci USA 72(6):2300-2304CrossRefGoogle Scholar
  124. Erson B, Janson JC, Ryd én L (1998) Introduction to protein purification. In: Janson JC, Ryd én L (eds). Protein purification: principles, high-resolution methods, and applications, 2nd edn. Wiley-VCH, Weinheim, pp 3-40Google Scholar
  125. Estell DA, Graycar TP, Wells JA (1985) Engineering an enzyme by site-directed mutagenesis to be resistant to chemical oxidation. J Biol Chem 260:6518-6521Google Scholar
  126. Euzenat O, Guibert A, Combes D (1998) Production and purification of Bacillus subtilis C4 lev-ansucrase: kinetic characterization of the enzyme. Ann NY Acad Sci 864:288-294CrossRefGoogle Scholar
  127. Falco ALP, Durrant LP, Franco TT (2000) Purification of α-galactosidase from seeds of Sesbania marginata. Braz J Chem Eng 17(4):819-825CrossRefGoogle Scholar
  128. Feller G, Narinx E, Arpigny JL et al. (1994) Temperature dependence of growth, enzyme secretion and activity of psychrophilic Antarctic bacteria. J Appl Microbiol Biotechnol 41(4):477-479Google Scholar
  129. Feller G, Le Bussy O, Gerday C (1998) Expression of psychrophilic genes in mesophilic hosts: assessment of the folding state of a recombinant α-amylase. Appl Environ Microbiol 64(3):1163-1165Google Scholar
  130. Fickers P, Ongena M, Destain J et al. (2006) Production and down-stream processing of an extra-cellular lipase from the yeast Yarrowia lipolytica. Enzyme Microb Technol 38(6):756-759CrossRefGoogle Scholar
  131. Filippusson H, Sigmundsson K (1992) An affinity ultrafiltration system for the purification of trypsin. Ann NY Acad Sci 672:613-618CrossRefGoogle Scholar
  132. Flindt M (1978) Health and safety aspects of working with enzymes. Proc Biochem 13(8):3-7Google Scholar
  133. Follows M, Hetherington PJ, Dunnill P et al. (1971) Release of enzymes from baker’s yeast by disruption in an industrial homogeniser. Biotechnol Bioeng 13:549-560CrossRefGoogle Scholar
  134. Foltmann B (1981) Gastric protease: structure, function evolution and mechanism of action. Essays Biochem 17:53-84Google Scholar
  135. Fonseca LP, Cabral JMS (1996) Evaluation of affinity and pseudo-affinity adsorption processes for penicillin acylase purification. Bioseparation 6(5):293-302Google Scholar
  136. Fonseca LP, Cabral JMS (2002) Penicillin acylase release from Escherichia coli cells by mechani-cal cell disruption and permeabilization. J Chem Technol Biotechnol 77(2):159-167CrossRefGoogle Scholar
  137. Foster D (1995) Optimizing recombinant product recovery through improvements in cell-disruption technologies. Curr Opin Biotechnol 6:523-526CrossRefGoogle Scholar
  138. Foster PR, Dunnill P, Lilly MD (1976) The kinetics of protein salting-out: precipitation of yeast enzymes by ammonium sulphate. Biotechnol Bioeng 18(4):545-580CrossRefGoogle Scholar
  139. Fountoulakis M, Juranville JF (2003) Enrichment of low-abundance brain proteins by preparative electrophoresis. Anal Biochem 313(2):267-282CrossRefGoogle Scholar
  140. Frenander U, J önsson AS (1996) Cell harvesting by cross-flow microfiltration using a shear-enhanced module. Biotechnol Bioeng 52(3):397-403CrossRefGoogle Scholar
  141. Galaev IY (1999) New methods of protein purification. Affinity ultrafiltration. Biochemistry (Mosc) 648:849-856Google Scholar
  142. Galaev IY, Mattiasson B (2002) Smart polymers for bioseparation and bioprocessing. CRC Press, Boca Raton, 292 ppCrossRefGoogle Scholar
  143. García E, García JL, García P et al. (1988) Molecular evolution of lytic enzymes of Streptococcus pneumoniae and its bacteriophages. Proc Natl Acad Sci USA 85(3):914-918CrossRefGoogle Scholar
  144. García-Garibay M, Torres J, L ópez-Munguía A et al. (1987) Influence of oxygen transfer on β-galactosidase production from Kluyveromyces marxianus. Biotechnol Lett 9:417-420CrossRefGoogle Scholar
  145. Garrido F, Banerjee UC, Chisti Y et al. (1994) Disruption of a recombinant yeast for the release of beta-galactosidase. Bioseparation 4(5):319-328Google Scholar
  146. Gebreselassie P, Hoic D, Masters JG et al. (2002) Oral composition providing enhanced tooth stain removal. US Patent 6379654, 30 April 2002Google Scholar
  147. George S, Raju V, Subramanian TV et al. (1997) Comparative study of protease production in solid substrate fermentation versus submerged fermentation. J Bioproc Biosys Eng 16(6):381-382Google Scholar
  148. Gerday G, Aittaleb M, Bentahir M (2000) Cold-adapted enzymes: from fundamentals to biotechnology. TIBTECH 18:103-107Google Scholar
  149. Ghosh R, Cui ZF (1998) Fractionation of BSA and lysozyme using ultrafiltration: effect of pH and membrane pretreatment. J Memb Sci 139(1):17-28CrossRefGoogle Scholar
  150. Gianfreda L, Scarfi MR (1991) Enzyme stabilization: state of the art. J Mol Cell Biochem 100(2):97-128Google Scholar
  151. Goosen MFA, Sablani SS, Al-Hinai H et al. (2005) Fouling of reverse osmosis and ultrafiltration membranes: a critical review. Separ Sci Technol 39(10):2261-2297CrossRefGoogle Scholar
  152. Gordillo MA, Sanz A, S ánchez A et al. (1998) Enhancement of Candida rugosa lipase production by using different control fed-batch operational strategies. Biotechnol Bioeng 60(2):156-168CrossRefGoogle Scholar
  153. Gordon NF, Tsujimura H, Cooney CL (1990) Optimization and simulation of continuous affinityrecycle extraction (CARE). Bioseparation 1(1):9-21Google Scholar
  154. Gottstein C, Forde R (2002) Affinity chromatography system for parallel purification of recombi-nant protein samples. Prot Eng 15(10):775-777CrossRefGoogle Scholar
  155. Green ML (1977) Review of the progress of dairy science: milk coagulants. J Dairy Res 44:159-188CrossRefGoogle Scholar
  156. Gregory S, Kelly ND (1996) Bromelain: a literature review and discussion of its therapeutic appli-cations. Altern Med Rev 1(4):243-257Google Scholar
  157. Guisán JM (2006) Immobilization of enzymes and cells. Springer, Berlin, Heidelberg, New York, 464 ppCrossRefGoogle Scholar
  158. Gul-Guven R, Guven K, Poli A et al. (2007) Purification and some properties of a β-galactosidase from the thermoacidophilic Alicyclobacillus acidocaldarius subsp. rittmannii isolated from Antarctica. Enzyme Microb Technol 40(6):1570-1577CrossRefGoogle Scholar
  159. Gupta A, Roy I, Khare SK et al. (2002) One-step purification of xylanase from Melanocarpus albomyces and ethylene glycol as a novel soluble additive for enhancing its thermal stability. Biotechnol Lett 24(23):2005-2009CrossRefGoogle Scholar
  160. Gupta MN, Roy I (2004) Enzymes in organic media: forms, functions and applications. Eur J Biochem 271:2573-2583CrossRefGoogle Scholar
  161. Gupta MN, Guoqiang D, Kaul R et al. (1994) Purification of xylanase from Trichoderma viride by precipitation with an anionic polymer Eudragit S 100. Biotechnol Tech 8(2):117-122CrossRefGoogle Scholar
  162. Gupta MN, Bradoo S, Saxena RK (1997) Rapid purification of extracellular tannase using poly-ethylene glycol-tannic acid complex. Lett Appl Microbiol 24(4):253-255CrossRefGoogle Scholar
  163. Gupta R, Bradoo S, Saxena R K (1999) Aqueous two-phase systems offer an attractive technology for large-scale protein. Curr Sci 77(4):520-523Google Scholar
  164. Gutiérrez C (1993) Determinaci ón de las condiciones de operaci ón en la producci ón de extracto de levadura autolizada. M.Sc. Thesis. School of Biochemical Engineering, Universidad Cat ólica de Valparaíso, Valparaíso, 138 ppGoogle Scholar
  165. Hage DS (1999) Affinity chromatography: a review of clinical applications. Clin Chem 45(5):593-615Google Scholar
  166. Hage DS (2006) Handbook of affinity chromatography. CRC Press, Boca Raton, 944 ppGoogle Scholar
  167. Haire RN, Tisel WA, White JG et al. (1984) On the precipitation of proteins by polymers: the hemoglobin - polyethylene glycol system. Biopolymers 23(12):2761-2779CrossRefGoogle Scholar
  168. Hansler M, Ullmann G, Jakubke HD (1995) The application of papain, ficin and clostripain in kinetically controlled peptide synthesis in frozen aqueous solutions. J Pept Sci (5):283-287CrossRefGoogle Scholar
  169. Hanson RL, Goldberg S, Goswami A (2005) Purification and cloning of a ketoreductase used for the preparation of chiral alcohols. Adv Synth Catal 347:1073-1080CrossRefGoogle Scholar
  170. Harakas NK (1994) Biospecific affinity chromatography. In: Harrison RG (ed). Protein purification process engineering. CRC Press, Boca Raton, pp 259-316Google Scholar
  171. Harkki A, Uusitalo J, Bailey M et al. (1989) A novel fungal expression system: secretion of active chymosin from the filamentous fungus Trichoderma reesei. Bio/Technology 7:596-601CrossRefGoogle Scholar
  172. Harris ELVG (2001) Concentration of the extract. In: Roe S (ed). Protein purification techniques: a practical approach. Oxford University Press, Oxford, pp 111-132Google Scholar
  173. Harve R, Bajpai R (2000) Separation of nucleic acids and proteins. In: Ahuja S (ed). Handbook of bioseparations. Academic Press, San Diego, 722 ppGoogle Scholar
  174. Hatti-Kaul R, Mattiasson B (2003a) Release of protein from biological host. In: Hatti-Kaul R, Mattiasson B (eds). Isolation and purification of proteins. CRC Press, Boca Raton, pp 1-28CrossRefGoogle Scholar
  175. Hatti-Kaul R, Mattiasson B (2003b) Isolation and purification of proteins. CRC Press, Boca Raton, 676 ppCrossRefGoogle Scholar
  176. Headon DR, Walsh G (1994) The industrial production of enzymes. Biotechnol Adv 12(4):635-646CrossRefGoogle Scholar
  177. Hiramatsu R, Aikawa J, Horinouchi S et al. (1989) Secretion by yeast of the zymogen form of Mucor rennin, an aspartic proteinase of Mucor pusillus, and its conversion to the mature form. The J Biol Chem 264(28):16862-16866Google Scholar
  178. Hodgson J (1994) The changing bulk biocatalyst market. Bio/Technology 12:789-791CrossRefGoogle Scholar
  179. Hoffmeister F (1887) Zur Lehre von der Wirkung der Salze. U¨ ber Regelmasigkeiten in der Ei-wessfallenden Wirkung der Salze und Ihre Beziehung zum Physiologichen verhalten derselben. Arch Expt Path Pharm 24:247-252CrossRefGoogle Scholar
  180. Hood EE (2002) From green plant to industrial enzymes. Enzyme Microb Technol 30:279-283CrossRefGoogle Scholar
  181. Hostettmann K, Marston A, Hostettmann M (1998) Preparative chromatography techniques: ap-plications in natural product isolation. Springer, Berlin, Heidelberg, New York, 244 ppGoogle Scholar
  182. Hua ZC (1997) Renaturation and purification of recombinant tissue-type plasminogen activator expressed in E. coli. IUBMB Life 41(4):815-820CrossRefGoogle Scholar
  183. Huang RB, Andrews BA, Asenjo JA (1991) Differential product release (DPR) of proteins from yeast: a new technique for selective product recovery from microbial cells. Biotechnol Bioeng 38:977-985CrossRefGoogle Scholar
  184. Huddleston J, Veide A, K öhler K et al. (1991) The molecular basis of partitioning in aqueous two-phase systems. TIBTECH 9(11):381-388Google Scholar
  185. Hunter JB, Asenjo JA (1987a) Kinetics of enzymatic lysis and disruption of yeast cells: I. Evalua-tion of two lytic systems with different properties. Biotechnol Bioeng 30:471-480CrossRefGoogle Scholar
  186. Hunter JB, Asenjo JA (1987b) Kinetics of enzymatic lysis and disruption of yeast cells: II. A simple model of lyis kinetics. Biotechnol Bioeng 30:481-490CrossRefGoogle Scholar
  187. Hustedt H, Kroner KH, Menge U et al. (1985) Protein recovery using two-phase systems. TIBTECH 3:139-144Google Scholar
  188. Hwang JH, Kim HS, Kim JM et al. (2007) Selective precipitation of proteins from pancretain using designed antisolvents. Ind Eng Chem Res 46:4289-4294CrossRefGoogle Scholar
  189. Iizumi T, Nakamura K, Fukase T (1990) Purification and characterization of a thermostable lipase from newly isolated Pseudomonas sp. KWI-56. Agric Biol Chem 54(5):1253-1258Google Scholar
  190. Illanes A (1974) Purification of adenylate kinase through precipitation. M.Sc. Thesis. Massachus-sets Institute of Technology, Boston, 168 pp.Google Scholar
  191. Illanes A (1994) Biotecnología de enzimas. Serie de monografías científicas. Organizaci ón de los Estados Americanos, Washington D.C. Ediciones Universitarias de Valparaíso, Valparaíso, 256 ppGoogle Scholar
  192. Illanes A, Gorgoll ón Y (1986) Kinetics of extraction of invertase from autolysed bakers’ yeast cells. Enzyme Microb Technol 8:81-84CrossRefGoogle Scholar
  193. Illanes A, Rossi MC (1981) Inducci ón de celulasas de Trichoderma reesei en medios de cultivos definidos. Rev Arg Microbiol 12 (3):79-86Google Scholar
  194. Illanes A, Gentina JC, Marchese MP (1988a) Production and stabilization of cellulases from Tri-choderma reesei. MIRCEN J Appl Microbiol Biotechnol 4:407-414CrossRefGoogle Scholar
  195. Illanes A, Z ú ñiga ME, Chamy R et al. (1988b) Immobilization of lactase and invertase on crosslinked chitin. In: Moo-Young M (ed). Immobilized enzymes and cells. Elsevier, London, pp 233-249Google Scholar
  196. Illanes A, Aroca G, Cabello L et al. (1992) Solid substrate fermentation of leached beet pulp with Trichoderma aureoviride. World J Microbiol Biotechnol 8:488-493CrossRefGoogle Scholar
  197. Illanes A, Acevedo F, Gentina J et al. (1994) Production of penicillin acylase from Bacillus mega-terium in complex and defined media. Proc Biochem 29(4):263-270CrossRefGoogle Scholar
  198. Illanes A, Acevedo F, Gentina JC et al. (1995) Pilot-plant production and evaluation of yeast lac-tase. Paper presented at the Seventh European Congress on Biotechnology, Nice, France, Feb-ruary 15-19, 1995Google Scholar
  199. Illanes A, Acevedo F, Gentina JC et al. (1996) Economic evaluation for the production of food-grade yeast lactase. Paper presented at the10th International Biotechnology Symposium. Syd-ney, Australia, August 25-30Google Scholar
  200. Illanes A, Altamirano C, Aillap án A et al. (1998) Packed-bed reactor performance with immobi-lized lactase under thermal inactivation. Enzyme Microb Technol 23:3-9CrossRefGoogle Scholar
  201. Impoolsup A, Caunt P, Greenfield PF (1989) Effect of growth rate on stability of a recombinant plasmid during continuous culture of Saccharomyces cerevisiae in non-selective medium. J Biotechnol 10(2):171-180CrossRefGoogle Scholar
  202. Ioniă A, Moscovici M, Drăgolici A et al. (2001) Lipase production in discontinuous operation system using a Candida lipolytica strain. Roum Biotechnol Lett 7(1):547-552Google Scholar
  203. Ito S, Kuno A, Suzuki R et al. (2004) Rational affinity purification of native Streptomyces family 10 xylanase. J Biotechnol 110(2):137-142CrossRefGoogle Scholar
  204. Iwamoto K, Shiraiwa Y (2005) Technical improvement in the purification of enzymes from red algae using an aqueous two-phase partitioning system. Phycol Res 53(2):164-168CrossRefGoogle Scholar
  205. Jacob F, Monod J (1961) Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 3:318-356CrossRefGoogle Scholar
  206. Janson JC, Rydén L (1998) Protein purification: principles, high-resolution methods, and applica-tions. Wiley-VCH, Weinheim, 712 ppGoogle Scholar
  207. Janson JC, Ersson B, Porath J (1974) The concentration of protein solutions by normal freezing. Biotechnol Bioeng 16:21-39CrossRefGoogle Scholar
  208. Jaw KS, Chou LH, Chang SM et al. (2007) Purification of a trypsin inhibitor from sweet potato in an aqueous two phase system. Biotechnol Lett 29(1) 137-140CrossRefGoogle Scholar
  209. Jayanta S, Bae JT, Park JP et al. (2001) Effect of substrate concentration on broth rheology and fungal morphology during exo-biopolymer production by Paecilomyces japonica in a batch bioreactor. Enzyme Microb Technol 29(6-7):392-399CrossRefGoogle Scholar
  210. Johansson G, Tjerneld F (1989) Affinity partition between aqueous phases - a tool for large-scale purification of enzymes. J Biotechnol 11(2-3):135-141CrossRefGoogle Scholar
  211. Johnson ME, Lucey JA (2006) Major technological advances and trends in cheese production. J Dairy Sci 89:1174-1178CrossRefGoogle Scholar
  212. Joo HS, Koo IM, Cho JW et al. (2005). Stabilization method of an alkaline protease from inactiva-tion by heat, SDS and hydrogen peroxide. Enzyme Microb Technol 36(5-6):766-772CrossRefGoogle Scholar
  213. Kamihira M, Kaul R, Mattiasson B (1992) Purification of recombinant protein A by aqueous two-phase extraction integrated with affinity precipitation. Biotechnol Bioeng 40(11):1381-1387CrossRefGoogle Scholar
  214. Kanga SW, Parka YS, Leeb JS et al. (2004) Production of cellulases and hemicellulases by As-pergillus niger KK2 from lignocellulosic biomass. Biores Technol 91(2):153-156CrossRefGoogle Scholar
  215. Karaolis DKR, Rashid MH, Chythanya R et al. (2005) c-di-GMP (3 -5 -cyclic diguanylic acid) inhibits Staphylococcus aureus cell-cell interactions and biofilm formation. Antimicrob Ag Chemother 49(3):1029-1038Google Scholar
  216. Kastner M (2000) Protein liquid chromatography. Elsevier, Amsterdam, 941 ppGoogle Scholar
  217. Kaur N, Sharma AD (2005) Production, optimization and characterization of extracellular invertase by an Actinomycete strain. J Sci Ind Res 64(7):515-519Google Scholar
  218. Kaur J, Sharma R (2006) Directed evolution: an approach to engineer enzymes. Crit Rev Biotech-nol 26:165-199CrossRefGoogle Scholar
  219. Kepka C, Colle TE, Persson J et al. (2003) Pilot-scale extraction of an intracellular recombinant cutinase from E. coli cell homogenate using a thermoseparating aqueous two-phase system. J Biotechnol 103(2):165-181CrossRefGoogle Scholar
  220. Kim SW, Hwang HJ, Xu CP et al. (2003) Optimization of submerged culture process for the pro-duction of mycelial biomass and exo-polysaccharides by Cordyceps militaris C738. J Appl Mi-crobiol 94(1):120-126CrossRefGoogle Scholar
  221. Kim SY, Gunasekaran S, Olson NF (2004) Combined use of chymosin and protease from Cry-phonectria parasitica for control of meltability and firmness of Cheddar cheese. J Dairy Sci 87:274-283CrossRefGoogle Scholar
  222. Klein IB, Kirsch JF (1969) The activation of papain and the inhibition of the active enzyme by carbonyl reagents. J Biol Chem 244(21):5928-5935Google Scholar
  223. Kleinig AR, Middelberg APJ (1998) On the mechanism of microbial cell disruption in high-pressure homogenisation. Chem Eng Sci 53(5):891-898CrossRefGoogle Scholar
  224. Knight P (1989) Downstream processing. Bio/Technology 7:777-780CrossRefGoogle Scholar
  225. Knorr, D, Shetty, KH, Kinsella JE (1979) Enzymatic lysis of yeast cell walls. Biotechnol Bioeng 21(11):2011-2021CrossRefGoogle Scholar
  226. Koch Y, Rademacher KH (1980) Chemical and enzymatic changes in the cell walls of Candida albicans and Saccharomyces cerevisiae by scanning electron microscopy. Can J Microbiol 26 (8):965-970CrossRefGoogle Scholar
  227. Koch C, Borg L, Skjødt K et al. (1998) Affinity chromatography of serine proteases on the triazine dye ligand Cibacron Blue F3G-A. J Chromat B 718(1):41-46Google Scholar
  228. K öhler K, Ljungquist C, Kondo A et al. (1991) Engineering proteins to enhance their partition coefficients in aqueous two-phase systems. Bio/Technology 9:642-646CrossRefGoogle Scholar
  229. Sturdík E, Farkas V (1991) Induction and acceleration of yeast lysis by addition of fresh yeast autolysate. Biotechnol Lett 13(8):543-546CrossRefGoogle Scholar
  230. Sturdík E (1993) Biochemical, morphological and cytochemical studies of enhanced autolysis of Saccharomyces cerevisiae. Folia Microbiol 38(6):479-485CrossRefGoogle Scholar
  231. Kosikowski FV, Mistry VV (1997) Cheese and fermented milk foods. Procedures and analysis, 3rd edn. LLC, Westport, pp 90-96Google Scholar
  232. Kroner HK, Kula MR (1978) Extraction of enzymes in aqueous two-phase systems. Proc Biochem 13(4):7-9Google Scholar
  233. Kroner KH, Sch ütte H, Hustedt H et al. (1984) Cross-flow filtration in the downstream processing of enzymes. Proc Biochem 19(2):67-74Google Scholar
  234. Kula MR (1979) Extraction and purification of enzymes in aqueos two-phase systems. In: Wingard L, Katchalsky-Katzir E, Goldstein L (eds). Applied biochemistry and bioengineering, vol 2. Enzyme technology. Academic Press, New York, pp 71-95Google Scholar
  235. Kula MR, Sch ütte H (1987) Purification of proteins and the disruption of microbial cells. Biotech-nol Prog 3:31-42CrossRefGoogle Scholar
  236. Kula MR, Kroner KH, Hustedt H et al. (1981) Technical aspects of extractive enzyme purification. Ann NY Acad Sci 369(1):341-354CrossRefGoogle Scholar
  237. Kumar A, Galaev IY, Mattiasson B (2003) Precipitation of proteins: non specific and specific. In: Hatti-Kaul R, Mattiasson B (eds). Isolation and purification of proteins. CRC Press, Boca Raton, pp 225-276Google Scholar
  238. Kurasawa T, Yachi M, Suto M et al. (1992) Induction of cellulase by gentiobiose and its sulfur-containing analog in Penicillium purpurogenum. Appl Environ Microbiol 58(1):106-110Google Scholar
  239. Labrou N, Clonis YD (1994) The affinity technology in downstream processing. J Biotechnol 36 (2):95-119CrossRefGoogle Scholar
  240. Labrou NE, Karagouni A, Clonis YD (1995) Biomimetic-dye affinity adsorbents for enzyme pu-rification: application to the one-step purification of Candida boidinii formate dehydrogenase. Biotechnol Bioeng 48(3):278-288CrossRefGoogle Scholar
  241. Ladisch MR, Builder SE, Painton CC et al. (1998) Protein purification: from molecular mecha-nisms to large-scale processes. American Chemical Society Publ, Washington DC, 302 ppGoogle Scholar
  242. Lalchev Z, Exerowa D (1981) Concentration of proteins by foaming. Biotechnol Bioeng 23:669-678CrossRefGoogle Scholar
  243. Lam H, Kavoosi M, Haynes CA et al. (2004) Affinity-enhanced protein partitioning in decyl α-D-glucopyranoside two-phase aqueous micellar systems. Biotechnol Bioeng 89(4):381-392CrossRefGoogle Scholar
  244. Lambert PW, Meers JL (1983) The production of industrial enzymes. Phil Trans R Soc Lond B 300:263-282CrossRefGoogle Scholar
  245. Lamsa M, Bloebaum P (1990) Mutation and screening to increase chymosin yield in a genetically-engineered strain of Aspergillus awamori. J Ind Microbiol Biotechnol 5(4):229-237Google Scholar
  246. Larreta-Garde V, Xu ZF, Thomas D (1988) Behavior of enzymes in the presence of additives: in-fluence of alcohols, polyols, and sugars on activity and stability of yeast alcohol dehydrogenase. Ann NY Acad Sci 542(1):294-298CrossRefGoogle Scholar
  247. Le MS, Atkinson T (1985) Crossflow microfiltration for recovery of intracellular products. Proc Biochem 20(1):26-31Google Scholar
  248. Lecker DN, Khan A (1998) Model for inactivation of α-amylase in the presence of salts: theoretical and experimental studies. Biotechnol Prog 14(4):621-625CrossRefGoogle Scholar
  249. Lee SL, Burt A, Russotti G et al. (1995) Microfiltration of recombinant yeast cells using a rotating disk dynamic filtration system. Biotechnol Bioeng 48(4):386-400CrossRefGoogle Scholar
  250. Lee KW, Bae HA, Shin GS et al. (2006) Purification and catalytic properties of novel enantiose-lective lipase from Acinetobacter sp. ES-1 for hydrolysis of (S)-ketoprofen ethyl ester. Enzyme Microb Technol 38(3-4):443-448CrossRefGoogle Scholar
  251. Leser EW, Asenjo JA (1992) Rational design of purification processes for recombinant proteins. J Chromat 584(1):43-57CrossRefGoogle Scholar
  252. Leser EW, Asenjo JA (1994) Protein recovery, separation and purification. Selection of optimal techniques using an expert system. Mem Inst Oswaldo Cruz RJ 89(1):99-109Google Scholar
  253. Liao YH, Brown MB, Martin GP (2004) Investigation of the stabilisation of freeze-dried lysozyme and the physical properties of the formulations. Eur J Pharm Biopharm 58(1):15-24CrossRefGoogle Scholar
  254. Lienqueo ME, Salgado JC, Asenjo JA (1999) An expert system for selection of protein purification processes: experimental validation. J Chem Technol Biotechnol 74(3):293-299CrossRefGoogle Scholar
  255. Liu J, Xi W (2006) Purification and characterization of a bifunctional enzyme with chitosanase and cellulase activity from commercial cellulase. Biochem Eng J 30(1):82-87CrossRefGoogle Scholar
  256. Liu LC, Prokopakis GJ, Asenjo JA (1988) Optimization of enzymatic lysis of yeast. Biotechnol Bioeng 32(9):1113-1127CrossRefGoogle Scholar
  257. Liu YC, Liao LC, Wu WT (2000) Cultivation of recombinant Escherichia coli to achieve high cell density with a high level of penicillin G acylase. Proc Natl Sci Counc ROC(B) 24(4):156-160Google Scholar
  258. Luedeking R, Piret EL (1959) A kinetic study of the lactic acid fermentation. Batch process at controlled pH. J Biochem Microbiol Technol Eng 1:393-412CrossRefGoogle Scholar
  259. Ma JKC, Drake PMW, Christou P (2003) The production of recombinant pharmaceutical proteins in plants. Nat Rev Genet 4:794-805CrossRefGoogle Scholar
  260. Mahadevan H, Hall CK (1990) Statistical-mechanical model of protein precipitation by nonionic polymer. AIChE J 36(10):1517-1528CrossRefGoogle Scholar
  261. Mahoney RR (1980) Number and nature of the sulphydryl groups of β-galactosidase from Kluyveromyces fragilis. J Food Biochem 4(3):189-199CrossRefGoogle Scholar
  262. Mahoney RR, Whitaker JR (1978) Stability and enzymatic properties of β-galactosidase from Kluyveromyces fragilis. J Food Biochem 1(4):327-350CrossRefGoogle Scholar
  263. Mahoney RR, Nickerson TA, Whitaker JR (1974) Selection of strain, growth conditions and ex-traction procedures for optimum production of lactase from Kluyveromyces fragilis. J Dairy Sci 58:1620-1629CrossRefGoogle Scholar
  264. Male KB, Nguyen AL, Luong JHT (1990) Isolation of urokinase by affinity ultrafiltration. Biotech-nol Bioeng 35(1):87-93CrossRefGoogle Scholar
  265. Mantafounis M, Pitts J (1990) Protein engineering of chymosin; modification of the optimum pH of enzyme catalysis. Prot Eng 3(7):605-609CrossRefGoogle Scholar
  266. Manzatu I, Arizan DE, Ionita-Manzatu V et al. (1999) Bioactive concentrate, its producing method and certain drug compositions containing also chondroitin sulphate. US Patent 5965151, 12 October 1999Google Scholar
  267. Mao QM, Hearn MTW (1996) Optimization of affinity and ion-exchange chromatographic processes for the purification of proteins. Biotechnol Bioeng 52(2):204-222CrossRefGoogle Scholar
  268. Marcos JC, Fonseca LP, Ramalho MT et al. (1999) Partial purification of penicillin acylase from Escherichia coli in poly(ethylene glycol)-sodium citrate aqueous two-phase systems). J Chro-mat B 734(1):15-22CrossRefGoogle Scholar
  269. Marston FAO, Lowe PA, Doel MT et al. (1984) Purification of calf prochymosin (prorennin) syn-thesized in Escherichia coli. Bio/Technology 2:800-804CrossRefGoogle Scholar
  270. Mateles RI (ed) (1998) Penicillin: a paradigm for biotechnology. Candida Corp, Illinois, 125 ppGoogle Scholar
  271. Mateescu R, Pop A, Cornea CP et al. (2002) Microbial enzymes-lectins interactions: applications for glycoproteins purification. Roum Biotechnol Lett 7(3):745-752Google Scholar
  272. Maurer K (2004) Detergent proteases. Curr Opin Biotechnol 15:330-334CrossRefGoogle Scholar
  273. McCoy M (2001) Making drugs with little bugs. Chem Eng News 79(21):37-43Google Scholar
  274. McDermid AS, McKee AS, Marsh PD (1988) Effect of environmental pH on enzyme activity and growth of Bacteroides gingivalis W50. Infect Immun 56(5):1096-1100Google Scholar
  275. Medronho R (2003) Solid-liquid separation. In: Hatti-Kaul R, Mattiasson B (eds). Isolation and purification of proteins. CRC Press, Boca Raton, pp 131-190Google Scholar
  276. Melissis S, Labrou NE, Clonis YD (2007) One-step purification of Taq DNA polymerase using nucleotide-mimetic affinity chromatography. Biotechnol J 2(1):121-132CrossRefGoogle Scholar
  277. Mendu DR, Ratnam BVV, Purnima A et al. (2005) Affinity chromatography of α-amylase from Bacillus licheniformis. Enzyme Microb Technol 37(7):712-717CrossRefGoogle Scholar
  278. Middelberg APJ (2000) Microbial cell disruption by high-pressure homogenization. In: Desai MA (ed). Downstream processing of proteins. Humana Press, Totowa, pp 11-22CrossRefGoogle Scholar
  279. Miranda EA, Berglund KA (1990) Recovery of Clostridium thermosulfurogenes produced β-amylase by (hydroxypropyl)methylcellulose partition. Biotechnol Prog 6:214-219CrossRefGoogle Scholar
  280. Miranda EA, Berglund KA (1993) Evaluation of column flotation in the downstream processing of fermentation products: recovery of a genetically engineered α-amylase. Biotechnol Prog 9:411-420CrossRefGoogle Scholar
  281. Mischitz M, Faber K, Willetts A (1995) Isolation of a highly enantioselective epoxide hydrolase from Rhodococcus sp. NCIMB 11216. Biotechnol Lett 17(9):893-898CrossRefGoogle Scholar
  282. Mislovi čov á D, Chudinova M, Vikartovska A et al. (1996) Lectin-glycoenzyme column chro-matography monitored by enzyme flow microcalorimetry. J Chromat A 722(1):143-149CrossRefGoogle Scholar
  283. Mitchell DA, Krieger N, Berovic M (eds) (2006) Solid-state fermentation bioreactors: fundamen-tals of design and operation. Springer, Berlin, Heidelberg, New York, 447 ppGoogle Scholar
  284. Mizrahi A (1986) Biologicals from animal cells in culture. Bio/Technology 13:389-392Google Scholar
  285. Mohamadi HS, Omidinia E (2007) Purification of recombinant phenylalanine dehydrogenase by partition in aqueous two-phase systems. J Chromat B 854:273-278CrossRefGoogle Scholar
  286. Monsan P, Duteurtre B, Moll M et al. (1978) Use of papain immobilized on spherosil for beer chillproofing. J Food Sci 43(2):424-427CrossRefGoogle Scholar
  287. Moon SH, Parulekar SJ (1991) Parametric study of protease production in batch and fed-batch cultures of Bacillus firmus. Biotechnol Bioeng 37(5):467-483CrossRefGoogle Scholar
  288. Morley KL, Kazlauskas RJ (2005) Improving enzyme properties: when are closer mutations better? TIBTECH 23(5):231-237Google Scholar
  289. Morris HJA, Anderson K (1991) A comparative study of cheddar cheeses made with fermentation produced calf chymosin from Kluyveromyces lactis and with calf rennet. Cult Dairy Prod J May:13-20Google Scholar
  290. Mosbach K, Guilford H, Ohlsson R et al. (1972) General ligands in affinity chromatography. Cofactor-substrate elution of enzymes bound to the immobilized nucleotides adenosine 5 -monophosphate and nicotinamide-adenine dinucleotide. Biochem J 127(4):625-631Google Scholar
  291. Moses V, Prevost C (1966) Catabolite repression of β-galactosidase synthesis in Escherichia coli. Biochem J 100(2):336-353Google Scholar
  292. Mukhopadhyay SN (1981) Growth of Trichoderma reesei in a pH cycling environment: application of a single-species logistic law. J Ferment Technol 59:309-313Google Scholar
  293. Mukhopadhyay SN, Malik RK (1980) Increased production of cellulases of Trichoderma sp. by pH cycling and temperature profiling. Biotechnol Bioeng 22:2237-2250CrossRefGoogle Scholar
  294. Murooka Y, Imanaka T (1994) Recombinant microbes for industrial and agricultural applications. Marcel Dekker, New York, 877 ppGoogle Scholar
  295. Nagata N, Herouvis KJ, Dziewulski DM et al. (1989) Cross-flow membrane microfiltration of a bacteriol fermentation broth. Biotechnol Bioeng 34(4):447-466CrossRefGoogle Scholar
  296. Nagodawithana T (1992) Yeast-derived flavors and flavor enhancers and their probable mode of action. Food Technol 46:138-144Google Scholar
  297. Nandakumar MP, Thakur MS, Raghavarao KSMS et al. (1999) Studies on catabolite repression in solid state fermentation for biosynthesis of fungal amylases. Lett Appl Microbiol 29:380-384CrossRefGoogle Scholar
  298. Neelakantan S, Mohanty AK, Kaushik JK (1999) Production and use of microbial enzymes for dairy processing. Curr Sci 77:143-149Google Scholar
  299. Niehaus F, Bertoldo C, K ähler M et al. (1999) Extremophiles as a source of novel enzymes for industrial application. Appl Microbiol Biotechnol 51:711-729CrossRefGoogle Scholar
  300. Nielsen J, Villadesen J, Lidén G (2003). Bioreaction engineering principles, 2nd edn. Kluwer Aca-demic, New York, 528 ppGoogle Scholar
  301. Oberg CJ, Merrill RK, Brown RJ et al. (1992) Effects of milk-clotting enzymes on physical prop-erties of mozzarella cheese. J Dairy Sci 75:669-675CrossRefGoogle Scholar
  302. Ogasahara KJ, Imanishi A, Isemura T (1970) Studies on thermophilic α-amylase from Bacillus stearothermophilus II. Thermal stability of thermophilic α-amylase. J Biochem 67(1):77-82Google Scholar
  303. Ogawa J, Shimizu S (1999) Microbial enzymes: new industrial applications from traditional screening methods. TIBTECH 17:13-21Google Scholar
  304. Olsvik E, Tucker KG, Thomas CR et al. (1993) Correlation of Aspergillus niger broth rheological properties with biomass concentration and the shape of mycelial aggregates. Biotechnol Bioeng 42 (9):1046-1052CrossRefGoogle Scholar
  305. Omar IC, Hayashi M, Nagai S (1987) Purification and some properties of a thermostable lipase from Humicola lanuginosa No. 3. Agric Biol Chem 51(1):37-45Google Scholar
  306. Pacheco-Oliver M, Veeraragavan K, Braendli E (1990) Separation of colour compounds from li-pase in fermentation supernatant by diafiltration. Biotechnol Tech 4(1):369-372CrossRefGoogle Scholar
  307. Pandey A, Selvakumar P, Soccol CR et al. (1999) Solid state fermentation for the production of industrial enzymes. Curr Sci 77(1):149-162Google Scholar
  308. Pandey A, Soccol C, Mitchell D (2000) New developments in solid state fermentation I: bio-processes and products. Proc Biochem 35:1153-1169CrossRefGoogle Scholar
  309. Panesar PS, Panesar R, Singh RS et al. (2007) Permeabilization of yeast cells with organic solvents for β-galactosidase activity. Res J Microbiol 2(1):34-41CrossRefGoogle Scholar
  310. Panke S, Wubbolts MG (2002) Enzyme technology and bioprocess engineering. Curr Opin Biotechnol 13(2):111-116CrossRefGoogle Scholar
  311. Parekh S, Vinci VA, Strobel RJ (2000) Improvement of microbial strains and fermentation processes. J Appl Microbiol Biotechnol 54(3):287-301CrossRefGoogle Scholar
  312. Park YK, De Santi MSS, Pastore GM (1979) Production and characterization of β-galactosidase from Aspergillus oryzae. J Food Sci 44(1):100-103CrossRefGoogle Scholar
  313. Pastan I, Adhya S (1976) Cyclic adenosine 5 -monophosphate in Escherichia coli. Bacteriol Rev 40:527-551Google Scholar
  314. Patel RK, Dodia MS, Joshy RH (2006) Purification and characterization of alkaline protease from a newly isolated haloalakaliphilic Bacillus sp. Proc Biochem 41:2002-2009CrossRefGoogle Scholar
  315. Pendzhiev AM (2002) Proteolytic enzymes of papaya: medicinal applications. Pharm Chem J 36 (6):315-317CrossRefGoogle Scholar
  316. Pierpoint WS (2004) The extraction of enzymes from plant tissues rich in phenolic compounds. Meth Mol Biol 244:65-74Google Scholar
  317. Pitcher WH (1986) Genetic modification of enzymes used in food processing. Food Technol October:62-69Google Scholar
  318. Podbielniak WJ, Kaiser HR, Ziegenhorn GJ (1970) The history of penicillin production. Chem Eng Symp Ser 66:43-50Google Scholar
  319. Prado LA, Huerta S, Rodríguez G et al. (1999) Avances en purificaci ón y aplicaci ón de enzimas en biotecnología. Universidad Aut ónoma Metropolitana, México, 367 ppGoogle Scholar
  320. Pressi G, Dal Toso R, Dal Monte R et al. (2003) Production of enzymes by plant cells immobilized by sol-gel silica. J Sol-Gel Sci Technol 26(1-3):1189-1193CrossRefGoogle Scholar
  321. Pungor E, Afeyan NB, Gordon NF et al. (1987) Continuous affinity-recycle extraction: a novel protein separation technique. Bio/Technology 5:604-608CrossRefGoogle Scholar
  322. Quintero-Ramírez R (1981) Ingeniería bioquímica: teoría y aplicaciones. Alhambra Mexicana, M éxico, 332 ppGoogle Scholar
  323. Quirk AV, Woodrow JR (1983) Tangential flow filtration - a new method for the separation of bacterial enzymes from cell debris. Biotechnol Lett 5(4):277-282CrossRefGoogle Scholar
  324. Raghavarao KSM, Ranganathan. STV, Srinivas ND et al. (2003) Aqueous two phase extraction-an environmentally benign technique. J Clean Technol Environ Pol 5(2):136-141CrossRefGoogle Scholar
  325. Raimbault M (1998) General and microbiological aspects of solid substrate fermentation. Electron J Biotechnol 1(3):174-188CrossRefGoogle Scholar
  326. Rasor JP, Voss E (2001) Enzyme-catalyzed processes in pharmaceutical industry. Appl Catal A General 221(1):145-158CrossRefGoogle Scholar
  327. Reed G, Peppler HJ (1973) Yeast technology. AVI Pub. Co, Westport, 378 ppGoogle Scholar
  328. Reetz MT, Jaeger KE (1999) Superior biocatalysts by directed evolution. In: Fessner WD (ed). Biocatalysis from discovery to application. Springer, Berlin, Heidelberg, New York, pp 31-57CrossRefGoogle Scholar
  329. Ren X, Yu D, Han S et al. (2007) Thermolysis of recombinant Escherichia coli for recovering a thermostable enzyme. Biochem Eng J 33(1):94-98CrossRefGoogle Scholar
  330. Riechmann L, Kasche V (1985) Peptide synthesis catalyzed by the serine proteinases chymotrypsin and trypsin. Biochim Biophys Acta 830(2):164-72Google Scholar
  331. Robinson PJ, Wheatley MA, Janson JC et al. (1974) Pilot scale affinity chromatography of β-galactosidase. Biotechnol Bioeng 16:1103-1112CrossRefGoogle Scholar
  332. Roe S (2001) Protein purification techniques: a practical approach. Oxford University Press, Ox-ford, 262 ppGoogle Scholar
  333. Romero J, Zydney AL (2002) Affinity ultrafiltration: effects of ligand binding on selectivity and process optimization. Biotechnol Bioeng 77(3):256-265CrossRefGoogle Scholar
  334. Roopesh K, Ramachandran S, Nampoothiri KM et al. (2006) Comparison of phytase production on wheat bran and oilcakes in solid-state fermentation by Mucor racemosus. Biores Technol 97 (3):506-511CrossRefGoogle Scholar
  335. Rose AH (1980) Microbial enzymes and bioconversions. Economic microbiology, vol 5. Academic Press, New York, 693 ppGoogle Scholar
  336. Rosenberg IM (2004) Protein analysis and purification: benchtop techniques, 2nd edn. Birkh äuser, Basel, 520 ppGoogle Scholar
  337. Rosenfeld H, Feigelson P (1969) Synergistic and product induction of the enzymes of tryptophan metabolism in Pseudomonas acidovorans. J Bacteriol 97(2):697-704Google Scholar
  338. Rosso A, Ferrarotti S, Miranda MV et al. (2005) Rapid affinity purification processes for cyclodex-trin glycosyltransferase from Bacillus circulans. Biotechnol Lett 27(16):171-1175CrossRefGoogle Scholar
  339. Rowan AD, Butte DJ, Barrett AJ (1990) The cysteine proteinases of the pineapple plant. Biochem J 266:869-875Google Scholar
  340. Sablani S, Goosen M, Al-Belushi R et al. (2001) Concentration polarization in ultrafiltration and reverse osmosis: a critical review. Desalin 141(3):269-289CrossRefGoogle Scholar
  341. Saha BC (2004) Production, purification and properties of endoglucanase from a newly isolated strain of Mucor circinelloides. Proc Biochem 39:1871-1876CrossRefGoogle Scholar
  342. Sahina A, Tetaud E, Merlin G et al. (2005) LdARL-1 His-tagged recombinant protein: purification by immobilized metal affinity expanded bed adsorption. J Chromat B 818(1):19-22CrossRefGoogle Scholar
  343. Sajedi RH, Naderi-Manesh H, Khajeh K et al. (2005) A Ca-independent α-amylase that is active and stable at low pH from the Bacillus sp. KR-8104. Enzyme Microb Technol 36(5-6):666-671CrossRefGoogle Scholar
  344. Salazar O, Asenjo JA (2007). Enzymatic lysis of microbial cells. Biotechnol Lett 29:985-994CrossRefGoogle Scholar
  345. Salazar O, Molitor J, Asenjo JA (1999) Cloning and expression of an Oerskovia xanthineolytica beta-1-3-glucanase in Escherichia coli. Biotechnol Lett 21(9):797-802CrossRefGoogle Scholar
  346. Salazar O, Basso C, Barba P et al. (2006) Improvement of the lytic properties of a beta-1-3-glucanase by directed evolution. Mol Biotechnol 33(3):211-219CrossRefGoogle Scholar
  347. Sanner T, Pihl A (1963) Studies on the active SH group of papain and on the mechanism of papain activation by thiols. The J Biol Chem 238(1):166-171Google Scholar
  348. Santos JA, Belo I, Mota M et al. (1996) Optimization study of Escherichia coli TB1 cell disruption for cytochrome b5 recovery in a small-scale bead mill. Biotechnol Prog 12(2):201-204CrossRefGoogle Scholar
  349. Sarkar P, Bhatacharya P, Mukherjea M (1987) Isolation and purification of protease from human placenta by foam fractionation. Biotechnol Bioeng 29:934-940CrossRefGoogle Scholar
  350. Sarmento MJ, Pires MJ, Cabral JM et al. (1997) Liquid-liquid extraction of a recombinant pro-tein, cytochrome b5, with aqueous two-phase systems of polyethylene glycol and potassium phosphate salts. Bioproc Biosyst Eng 16(5):295-297Google Scholar
  351. Sarubbo LA, Oliveira LA, Porto ALF et al. (2004) Partition of proteins in aqueous two-phase systems based on cashew-nut tree gum and poly (ethylene glycol). Braz Arch Biol Technol 47 (5):685-691CrossRefGoogle Scholar
  352. Schaap D, Parker PJ (1990) Expression, purification, and characterization of protein kinase Cep-silon. J Biol Chem 265(13):7301-7307Google Scholar
  353. Schaffeld G, Illanes A, N ú ñez L (1988) Recovery of cellulases from spent broth of sugar beet pulp fermentation by Trichoderma reesei. MIRCEN J Appl Microbiol Biotechnol 4:414-417Google Scholar
  354. Schmid A, Dordick JS, Hauer B et al. (2001) Industrial biocatalysis today and tomorrow. Nature 409:258-268CrossRefGoogle Scholar
  355. Schneider K, Pinkwart M, Jochim K (1983) Purification of hydrogenases by affinity chromatogra-phy on Procion Red-agarose. Biochem J 213(2):391-398Google Scholar
  356. Schoemaker HE, Mink D, Wubbolts MG (2003) Dispelling the myths - biocatalysis in industrial synthesis. Science 299(5613):1694-1697CrossRefGoogle Scholar
  357. Schustolla D, Deckwer WD, Sch ügerl K et al. (1992) Enzyme purification by immobilized metal ion affinity partitioning - application to D-hydroxyisocaproate dehydrogenase. Bioseparation 3 (2-3):167-175Google Scholar
  358. Sch ütte H, Kroner KH, Hustedt H et al. (1983) Experiences with a 20 litre industrial bead mill for the disruption of microorganisms. Enzyme Microb Technol 5(2):143-148CrossRefGoogle Scholar
  359. Sharma A, Gupta MN (2002) Macroaffinity ligand-facilitated three-phase partitioning (MLFTPP) for purification of xylanase. Biotechnol Bioeng 80(2):228-232CrossRefGoogle Scholar
  360. Sharma A, Sharma S, Gupta MN (2000) Purification of alkaline phosphatase from chicken intestine by three-phase partitioning and use of phenyl-Sepharose 6B in the batch mode. Bioseparation 9 (3):155-161CrossRefGoogle Scholar
  361. Shin JH, Lee GM, Kim JH (1994) Comparison of cell disruption methods for determining β-galactosidase activity expressed in animal cells. Biotechnol Tech 8(6):425-430CrossRefGoogle Scholar
  362. Shinmyo A, Davis IK, Nomoto F et al. (1978) Catabolite repression of hydrolases in Aspergillus niger. J Appl Microbiol Biotechnol 5(1):59-68CrossRefGoogle Scholar
  363. Shire SJ, Shahrokh Z, Liu J (2004) Challenges in the development of high protein concentration formulations. J Pharm Sci 93(6):1390-1402CrossRefGoogle Scholar
  364. Sian HK, Said M, Hassan O et al. (2005) Purification and characterization of cyclodextrin glucan-otransferase from alkalophilic Bacillus sp. G1. Proc Biochem 40:1101-1111CrossRefGoogle Scholar
  365. Simeonidis E, Pinto JM, Lienqueo ME et al. (2005) MINLP models for the synthesis of optimal peptide tags and downstream protein processing. Biotechnol Prog 21(3):875-884CrossRefGoogle Scholar
  366. Simpson JM (1994) Conventional chromatography. In: Harrison RG (ed). Protein purification process engineering. CRC Press, Boca Raton, pp 209-258Google Scholar
  367. Simpson RJ, O’Farrell PA (2004) Hydrophobic interaction chromatography In: Simpson RJ (ed). Purifying proteins for proteomics: a laboratory manual. CSHL Press, Cold Spring Harbor, pp 209-220Google Scholar
  368. Singh RP, Heldman DR (2001) Introduction to food engineering, 3rd edn. Academic Press, New York, 620 ppGoogle Scholar
  369. Singh R, Banerjee A, Kaul P et al. (2005) Release of an enantioselective nitrilase from Alcaligenes faecalis MTCC 126: a comparative study. Bioproc Biosys Eng 27(6):415-424CrossRefGoogle Scholar
  370. Singh RS, Rajesh D, Munish P (2007) Partial purification and characterization of exoinulinase from Kluyveromyces marxianus YS-1 or preparation of high-fructose syrup. J Microbiol Biotechnol 178 (5):733-738Google Scholar
  371. Smith HL, Waltman PE (1995) The theory of the chemostat: dynamics of microbial competition. Cambridge University Press, Cambridge, 329 ppCrossRefGoogle Scholar
  372. Smith CJ, Martin P, Scott SM (1999) HPLC purification of recombinant proteins. In: Aboul-Enein HY (ed). Analytical and preparative separation methods of biomacromolecules. Marcel Dekker, New York, pp 301-330Google Scholar
  373. Soles CL, Tsai AM, Cicerone MT (2006) Glass dynamics and the preservation of proteins. In: Murphy RM, Tsai AM (eds). Misbehaving proteins. Springer, New York, pp 193-214CrossRefGoogle Scholar
  374. Sp ök A (2006) Safety regulations of food enzymes. Food Technol Biotechnol 44(2):197-209Google Scholar
  375. Stuart WD, Ivy JM, Koo K (1997) Neurospora expression system. US Patent 5695965, 9 Decem-ber 1997Google Scholar
  376. Su WW, Arias R (2003) Continuous plant cell perfusion culture: bioreactor characterization and secreted enzyme production. J Biosci Bioeng 95(1):13-20Google Scholar
  377. Su ZG, Feng XL (1999) Process integration of cell disruption and aqueous two-phase extraction. J Chem Technol Biotechnol 74(3):284-288CrossRefGoogle Scholar
  378. Subramanian S (1984) Dye-ligand affinity chromatography: the interaction of Cibacron Blue F3GA with proteins and enzymes. Crit Rev Biochem 16(2):169-205CrossRefGoogle Scholar
  379. Sun Y, Xue JL, Dong XY (1995) Modelling and analysis of the continuous affinity-recycle ex-traction process: a case of specific elution with low molecular weight competitive inhibitor. J Bioproc Biosyst Eng 13(4):205-210Google Scholar
  380. Svarachorn A, Tsuchido T, Shinmyo A et al. (1991) Autolysis of Bacillus subtilis induced by low temperature. J Ferment Bioeng 71(4):281-283CrossRefGoogle Scholar
  381. Swinkels BW, Ooyen AJJ, Bonekamp FJ (1993) The yeast Kluyveromyces lactis as an efficient host for heterologous gene expression. J Ant van Leeuwen 64(2):187-201CrossRefGoogle Scholar
  382. Tashpulatova BA, Davranova KD (1992) Influence of metal ions on the activity and stability of the glucose isomerase from Streptomyces atratus. J Chem Natur Comp 27(6):735-739CrossRefGoogle Scholar
  383. Taussig SJ, Batkin S (1988) Bromelain, the enzyme complex of pineapple (Ananas comosus) and its clinical application. An update. J Ethnopharmacol 22(2):191-203CrossRefGoogle Scholar
  384. Teotia S, Gupta MN (2004) Purification of phospholipase D by two-phase affinity extraction. J Chromat A 1025(2):297-301CrossRefGoogle Scholar
  385. Thomas A, Winkler MA (1977) Foam separation of biological materials. In: Wiseman A (ed). Topics in enzyme and fermentation biotechnology 1. Ellis Horwod, Chichester, pp 71-87Google Scholar
  386. Thomas SM, DiCosimo R, Nagarajan V (2002) Biocatalysis: applications and potentials for the chemical industry. TIBTECH 20(6):238-242Google Scholar
  387. Thompson NE, Aronson DB, Burgess RR (1990) Purification of eukaryotic RNA polymerase II by immunoaffinity chromatography. Elution of active enzyme with protein stabilizing agents from a polyol-responsive monoclonal antibody. J Biol Chem 265(12):7069-7077Google Scholar
  388. Tjerneld F, Berner S, Cajarville A et al. (1986) New aqueous two-phase system based on hydrox-ypropyl starch useful in enzyme purification. Enzyme Microb Technol 8:417-423CrossRefGoogle Scholar
  389. Tramper J (1994) Applied biocatalysis: from product request to idea to product. In: Cabral JMS, Boros DBL, Tramper J (eds). Applied biocatalysis. Harwood Acad Publ, Chur, pp 1-45Google Scholar
  390. Traxler MF, Chang DE, Conway T (2006) Guanosine 3 , 5 -bispyrophosphate coordinates global gene expression during glucose-lactose diauxie in Escherichia coli. Proc Natl Acad Sci USA 103 (7):2374-2379CrossRefGoogle Scholar
  391. Tsuchiya K, Gomi K, Kitamoto K et al. (1993) Secretion of calf chymosin from the filamentous fungus Aspergillus oryzae. Appl Microbiol Biotechnol 40(2-3):327-332CrossRefGoogle Scholar
  392. Tucker GA, Woods LFJ (1995) Enzymes in food processing. Blackie Academic & Professional, London, 336 ppGoogle Scholar
  393. Ulber R, Plate K, Reif OW et al. (2003) Membranes for protein isolation and purification. In: Hatti-Kaul R, Mattiasson B (eds). Isolation and purification of proteins. CRC Press, Boca Raton, pp 191-224Google Scholar
  394. Uhlig H (1998) Industrial enzymes and their applications. Wiley-IEEE, New York, 454 ppGoogle Scholar
  395. Underkofler LA, Barton RR, Rennert SS (1958) Production of microbial enzymes and their appli-cations. Appl Microbiol 6(3):212-221Google Scholar
  396. Vaks B, Mory Y, Pederson JU et al. (1984) A semi-continuous process for the production of human interferon-αc from E. coli using tangential-flow microfiltration and immuno-affinity chromatog-raphy. Biotechnol Lett 6(10):621-626CrossRefGoogle Scholar
  397. van den Berg G, de Koning PJ, van Ginkel WA et al. (1987) NIZO Rapport R126, 31 pp, ISSN 0548-1090Google Scholar
  398. van den Berg JA, van der Laken KJ, van Ooyen AJJ et al. (1990) Kluyveromyces as a host for het-erologous gene expression: expression and secretion of prochymosin. Bio/Technology 8:135-139CrossRefGoogle Scholar
  399. van den Tweel WJJ, Leak D, Bielicki S et al. (1994) Biocatalyst production. In: Cabral JMS, Boros DBL, Tramper J (eds). Applied biocatalysis. Harwood Acad Publ, Chur, pp 157-236Google Scholar
  400. van Dijck PWM (1999) Chymosyn and phytase made by genetic engineering. J Biotechnol 67:77-80CrossRefGoogle Scholar
  401. van Gaver D, Huyghebaert A (1991) Optimization of yeast cell disruption with a newly designed bead mill. Enzyme Microb Technol 13(8):665-671CrossRefGoogle Scholar
  402. Vanhanen M, Tuomi T, Tiikkainen U et al. (2000) Risk of enzyme allergy in the detergent industry. Occup Environ Med 57:121-125CrossRefGoogle Scholar
  403. van Oss J (1989) On the mechanism of the cold ethanol precipitation method of plasma protein fractionation. J Prot Chem (5):661-668CrossRefGoogle Scholar
  404. Varley J, Kaul A, Ball S (1996) Partition of protein from binary mixtures by a batch foaming process. Biotechnol Tech 10(2):133-140CrossRefGoogle Scholar
  405. V ásquez-Alvarez E, Lienqueo ME, Pinto JM (2001) Optimal synthesis of protein purification processes. Biotechnol Prog 17:685-696CrossRefGoogle Scholar
  406. Vehmaanper ä JO, Korhola MP (1986) Stability of the recombinant plasmid carrying the Bacillus amyloliquefaciens α-amylase gene in B. subtilis. J Appl Microbiol Biotechnol 23(6):456-461CrossRefGoogle Scholar
  407. Veide A, Smeds AL, Enfors SO (1983) A process for large-scale isolation of β -galactosidase from E. coli in an aqueous two-phase system. Biotechnol Bioeng 25(7):1789-1800CrossRefGoogle Scholar
  408. Verdoes JC, Punt PJ, van den Hondel CAM (1995) Molecular genetic strain improvement for the overproduction of fungal proteins by filamentous fungi. J Appl Microbiol Biotechnol 43 (2):195-205CrossRefGoogle Scholar
  409. Vieille C, Zeikus GJ (2001) Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 65(1):1-43CrossRefGoogle Scholar
  410. Vlachy V, Blanch HW, Prausnitz JM (1993) Liquid-liquid phase separations in aqueous solutions of globular proteins. AIChE J 39(2):215-223CrossRefGoogle Scholar
  411. Vohra A, Satyanarayana T (2003) Phytases: microbial sources, production, purification and poten-tial biotechnological applications. Critic Rev Biotechnol 23(1):29-60CrossRefGoogle Scholar
  412. Wang DIC, Cooney CL, Demain AL et al. (1979) Fermentation and enzyme technology. John Wiley Sons, New York, 374 ppGoogle Scholar
  413. Wanner BL, Kodaira R, Neidhardt FC (1978) Regulation of lac operon expression: reappraisal of the theory of catabolite repression. J Bacteriol 136(3):947-954Google Scholar
  414. Ward M, Wilson LJ, Kodama KH et al. (1990) Production of chymosin in Aspergillus by expression as a glucoamylase-chymosin fusion. Bio/Technology 8:435-440CrossRefGoogle Scholar
  415. Watanabe E, Tsoka S, Asenjo JA (1994) Selection of chromatographic protein purification opera-tions based on physicochemical properties. Ann NY Acad Sci 721(1):348-364CrossRefGoogle Scholar
  416. Wecke J, Lahav M, Ginsburg I et al. (1982) Cell wall degradation of Staphylococcus aureus by lysozyme. Arch Microbiol 131(2):116-123CrossRefGoogle Scholar
  417. Werner L, Latzko L, Hampel W (1993) Spraydrying of yeast-lytic enzymes from Arthrobacter sp. Biotechnol Tech 7(9):663-666CrossRefGoogle Scholar
  418. Westerlund B (2004) Ion-exchange chromatography. In: Simpson RJ (ed). Purifying proteins for proteomics: a laboratory manual. CSHL Press, Cold Spring Harbor, pp 121-146Google Scholar
  419. Wheelwright SM (1987) Designing downstream processes for large scale protein purification. Bio/Technology 5:789-793CrossRefGoogle Scholar
  420. Whitaker RJ (1994) Principles of enzymology for the food sciences. CRC Press, Boca Ratón, 648 ppGoogle Scholar
  421. White TJ, Meade JH, Shoemaker SP et al. (1984) Enzyme cloning for the food fermentation in-dustry. Food Fechnol February:90-98Google Scholar
  422. Wiersma M, Harder W (1978) A continuous culture study of the regulation of extracellular protease production in Vibrio SA1. J Ant van Leeuwen 44(2):141-155CrossRefGoogle Scholar
  423. Wiseman A (1995) Handbook of enzyme biotechnology, 3rd edn. Ellis Horwood, London, 738 ppGoogle Scholar
  424. Wu CS (1999) Column handbook for size exclusion chromatography. Academic Press, New York, 631 ppCrossRefGoogle Scholar
  425. Wu X, Liu G (1996) Purification of trypsin by affinity chromatography with sulphamethoxazolum ligand. Biomed Chromat 10(5):228-232CrossRefGoogle Scholar
  426. Wurm FM (2004) Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 22(11):1393-1398CrossRefGoogle Scholar
  427. Xu Y, Vitolo M, de Albuquerque CN et al. (2003) Purification of glucose-6-phosphate dehydroge-nase from baker’s yeast in aqueous two-phase systems with free triazine dyes as affinity ligands. Appl Biochem Biotechnol 108(1-3):853-865CrossRefGoogle Scholar
  428. Yang CM, Tsao GT (1982) Affinity chromatography. In: Fiechter A (ed). Advances in Biochemical Engineering 25. Springer-Verlag, Berlin, pp 9-42Google Scholar
  429. Yang VC, Bernstein H, Langer R (1987) Large scale purification of heparinase. Biotechnol Prog 3(1):27-30CrossRefGoogle Scholar
  430. Yildiz H, Akyilmaz E, Dinçkaya E (2004) Catalase immobilization in cellulose acetate beads and determination of its hydrogen peroxide decomposition level by using a catalase biosensor. J Artif Cells Blood Subst Biotechnol 32(3):443-452CrossRefGoogle Scholar
  431. Yu M, de Swaan Arons J, Smit JA (1994). A simple model for estimating protein solubility in aqueous polymer solutions. J Chem Technol Biotechnol 60(4):413-418CrossRefGoogle Scholar
  432. Yutaki A, Yutani K, Isemura T (1969) Stability of the conformation of saccharifying bacterial α-amylase. J Biochem 65(2):201-208Google Scholar
  433. Zang M, Trautmann H, Gandor C et al. (1995) Production of recombinant proteins in Chinese hamster ovary cells using a protein-free cell culture medium. Bio/Technology 13:389-392CrossRefGoogle Scholar
  434. Zheng H, Chern J, Su L et al. (2007) One-step purification and immobilization of his-tagged GL-7ACA acylase. Enzyme Microb Technol 41:474-479CrossRefGoogle Scholar
  435. Zhou H, Holwill ILJ, Titchener-Hooker NJ (1997) A study of the use of computer simulations for the design of integrated downstream processes. Bioproc Biosys Eng 16(6):367-374Google Scholar
  436. Z ú ñiga ME, Illanes A, de la Barrera S (1992). Extraction of lactase from Kluyveromyces cells by abrasion milling. Paper presented at the Ninth International Biotechnology Symposium. Crystal City, August 16-21Google Scholar

Copyright information

© Springer Science + Business Media B.V. 2008

Authors and Affiliations

  • Andrés Illanes
    • 1
  1. 1.School of Biochemical EngineeringPontificia Universidad Católica de ValparaísoValparaísoChile

Personalised recommendations