Skip to main content

Mid-range Ultradian Rhythms in Drosophila and the Circadian Clock Problem

  • Chapter
Ultradian Rhythms from Molecules to Mind

Abstract

The current molecular model of the circadian timer presumes a 24-h escapement based on a transcription/translation oscillator (TTO) as the ultimate frequency source. The output of a very accurate mammalian circadian clock functioning both in free-run and LD-entrained mode is here analyzed using clock-theory methodology. The results are used to ask whether this postulated molecular oscillator is consistent in theory with the precision observed. The outcome suggests that the TTO is found wanting in this regard and a number of reasons why this may be so are discussed. In contrast, mid-range ultradian oscillations (τ ~ 1–18 h) provide likely evidence for even faster oscillations, and these very high frequency ultradian oscillations in turn offer an alternative to the TTO as the biological clock’s escapement. The well-studied TTO would act as the “integrator” of this inherently more precise timing information translating it into a relevant time frame. Two-part timing systems such as this are universal in all man-made clocks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell. Garland, New York.

    Google Scholar 

  • Allan DW, Ashby N, Hodge CC (1997) The science of timekeeping. Hewlett Packard Application Note 1289.

    Google Scholar 

  • Bargiello TA, Young MW (1984) Molecular genetics of a biological clock in Drosophila. Proc Natl Acad Sci USA 81: 2142–2146.

    Article  PubMed  CAS  Google Scholar 

  • Barkai N, Leibler S (2001) Circadian clocks limited by noise. Nature 403: 267–268.

    Google Scholar 

  • Barrio RA, Zhang L, Maini PK (1997) Hierarchically coupled ultradian oscillators generating robust circadian rhythms. Bull Math Biol 59: 517–532.

    Article  PubMed  CAS  Google Scholar 

  • Beauchamp K, Yuen C (1979) Digital methods for signal analysis. George, Allen, Unwin, Boston.

    Google Scholar 

  • Berg OG, Winter RB, von Hippel PH (1981) Diffusion-driven mechanism of protein translocation on nucleic acids. 1. Models and theory. Biochemistry 20: 6929–6948.

    Article  PubMed  CAS  Google Scholar 

  • Bünning E (1964) The physiological clock. Academic Press, New York.

    Google Scholar 

  • Buttner D, Wollnik F (1984) Strain differentiated circadian and ultradian rhythms in locomotor activity of the laboratory rat. Behav Genet 14: 137–151.

    Article  PubMed  CAS  Google Scholar 

  • Chatfield C (1989) The analysis of time series. Chapman and Hall, London.

    Google Scholar 

  • Chay TR (1981) A model for biological oscillations. Proc Natl Acad Sci USA 78: 2204–2207.

    Article  PubMed  CAS  Google Scholar 

  • Chovnik A (ed) (1960) Cold Spring Harbor Symposia on Quantitative Biology XXV Waverly, Baltimore MD.

    Google Scholar 

  • Clynch JR (2002) Precise time and time interval clocks, time frames and frequency. http://www.gmat.unsw.edu.au/snap/gps/clynch_pdfs/pttinote.pdf.

  • Daan S (1981) Adaptive daily strategies in behavior. In: Aschoff J (ed) Biological rhythms. Plenum, New York, pp 275–298 (Handbook of behavioral neurobiology, vol 4).

    Google Scholar 

  • Daan S, Aschoff J (1981) Short-term rhythms in activity. In: Aschoff J (ed) Biological rhythms. Plenum, New York, pp 491–498 (Handbook of behavioral neurobiology, vol 4).

    Google Scholar 

  • Darwin C, Darwin F (1880) The power of movement in plants. John Murray, London.

    Google Scholar 

  • DeCoursey P (1960) Phase control of activity in a rodent. In: Chovnik A (ed) Cold Spring Harbor Symposia on Quantitative Biology XXV Waverly, Baltimore MD, pp 49–55.

    Google Scholar 

  • DeMairan JB (1729) Observation botanique. In: Histoire de l’Academie Royale des Sciences. Paris, p 35.

    Google Scholar 

  • Dowse H, Palmer J (1990) Evidence for ultradian rhythmicity in an intertidal crab. In: Hayes DK, Pauly JP, Reiter RJ (eds) Chronobiology: its role in clinical medicine, general biology, and agriculture, Part B. Wiley-Liss, New York, pp 691–697.

    Google Scholar 

  • Dowse HB, Palmer JD (1992) Comparative studies of tidal rhythms. XI. Ultradian and circalunidian rhythmicity in four species of semiterrestrial, intertidal crabs. Mar Behav Physiol (21: 105–119).

    Article  Google Scholar 

  • Dowse H, Ringo J (1987) Further evidence that the circadian clock in Drosophila is a population of coupled ultradian oscillators. J Biol Rhythms 2: 65–76.

    Article  PubMed  CAS  Google Scholar 

  • Dowse H, Ringo J (1989a) The search for hidden periodicities in biological time series revisited. J Theor Biol 139: 65–76.

    Article  Google Scholar 

  • Dowse H, Ringo J (1989b) Rearing Drosophila in constant darkness produces phenocopies of period circadian clock mutants. Physiol Zool 62: 785–803.

    Google Scholar 

  • Dowse HB, Ringo JM (1991) Comparisons between “periodograms” and spectral analysis: Apples are apples after all. J Theoret Biol 148: 139–144.

    Article  CAS  Google Scholar 

  • Dowse H, Ringo J (1992) Is the circadian clock a “metaoscillator?” Evidence from studies of ultradian rhythms in Drosophila. In: Young M (ed) Molecular approaches to circadian clocks. Marcel Dekker, New York, pp 195–220.

    Google Scholar 

  • Dowse H, Hall JC, Ringo J (1987) Circadian and ultradian rhythms in period mutants of Drosophila melanogaster. Behav Genet 17: 19–35.

    Article  PubMed  CAS  Google Scholar 

  • Dowse H, Dushay M, Hall JC, Ringo J (1989) High-resolution analysis of locomotor activity rhythms in disconnected, a visual system mutant of Drosophila melanogaster. Behav Genet 19: 529–542.

    Article  PubMed  CAS  Google Scholar 

  • Dunlap J (1999) Molecular bases for circadian clocks. Cell 96: 271–290.

    Article  PubMed  CAS  Google Scholar 

  • Dushay MS, Rosbash M, Hall JC (1989) The disconnected visual system mutations of Drosophila melanogaster drastically disrupt circadian rhythms. J Bio Rhythms 4: 1–27.

    Article  CAS  Google Scholar 

  • Edmunds LN Jr (1988) Cellular and molecular bases of biological clocks. Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  • Edwards R, Gibson R, Illner R, Paetkau V (2007) A stochastic model for circadian rhythms from coupled ultradian oscillators. Theor Biol Model 4: 1–11.

    Article  CAS  Google Scholar 

  • Ehret CF, Trucco E (1967) Molecular models for the circadian clock. I. The chronon concept. J Theor Biol 15: 240–262.

    Article  PubMed  CAS  Google Scholar 

  • Endy D, Brent R (2001) Modelling cellular behaviour. Nature 409: 391–395.

    Article  PubMed  CAS  Google Scholar 

  • Enright JT (1965) The search for rhythmicity in biological time-series. J Theor Biol 8: 662–666.

    Article  Google Scholar 

  • Enright JT (1990) A comparison of periodograms and spectral analysis: don’t expect apples to taste like oranges. J Theor Biol 143: 425–430.

    Article  Google Scholar 

  • Goldbeter A (1995) A model for circadian oscillations in the Drosophila period protein (PER). Proc R Soc Lond B 261: 319–324.

    Article  CAS  Google Scholar 

  • Gonze D, Halloy J, Golbeter A (2002) Robustness of circadian rhythms with respect to molecular noise. Proc Natl Acad Sci USA 99: 673–678.

    Article  PubMed  CAS  Google Scholar 

  • Hall JC (2003a) A neurogeneticist’s manifesto. J Neurogenet 17: 1–90.

    Article  PubMed  Google Scholar 

  • Hall JC (2003b) Genetics and molecular biology of rhythms in Drosophila and other insects. Advances in genetics, vol. 48. Academic, Boston MA.

    Google Scholar 

  • Hall JC, Kyriacou CP (1990) Genetics of biological rhythms in Drosophila. Adv Insect Physiol 22: 221–298.

    Article  Google Scholar 

  • Hamblen-Coyle M, Konopka RJ, Zwiebel LJ, Colot HV, Dowse HB, Rosbash M, Hall JC (1989) A new mutation at the period locus of Drosophila melanogaster with some novel effects on circadian rhythms. J Neurogenet 5: 229–256.

    Article  PubMed  CAS  Google Scholar 

  • Helfrich C (1986) Role of the optic lobes in the regulation of the locomotor activity rhythm of Drosophila melanogaster. Behavioral analysis of neural mutants. J Neurogenet 3: 321–343.

    Article  PubMed  CAS  Google Scholar 

  • Helfrich C, Engelmann W (1983) Circadian rhythm of the locomotor activity in Drosophila melanogaster mutants sine oculis and small optic lobes. Physiol Entomol 8: 257–272.

    Article  Google Scholar 

  • Helfrich-Förster C (1998) Robust circadian rhythmicity of Drosophila melanogaster requires the presence of lateral neurons: a brain-behavioral study of disconnected mutants. J Comp Phsyiol A 182: 435–453.

    Article  Google Scholar 

  • Herzog ED, Aton SJ, Numano R, Sakaki Y, Tei H (2004) Temporal precision in the mammalian circadian system: a reliable clock from less reliable neurons. J Biol Rhythms 19: 35–46.

    Article  PubMed  Google Scholar 

  • Howe DA, Allan DW, Barnes JA (1981) Properties of signal sources and measurement methods. Proc. 35th Annual Symposium on Frequency Control. In: Sullivan DB, Allan DW, Howe DA, Walls FL (eds) Characterization of clocks and oscillators, NIST technical note 1337, United States Department of Commerce, National Institute of Standards and Technology.

    Google Scholar 

  • Itano WM, Ramsey NF (1993) Accurate measurement of time. Sci Am 269: 56–65.

    Article  CAS  Google Scholar 

  • Kaneko M, Hamblen MJ, Hall JC (2000) Involvement of the period gene in developmental time-memory: effect of the per Short mutation on phase shifts induced by light pulses delivered to Drosophila larvae. J Biol Rhythms 15: 13–30.

    Article  PubMed  CAS  Google Scholar 

  • Klevecz RR, Kaufmann SA, Shymko RM (1984) Cellular clocks and oscillators. Int Rev Cytol 5: 97–126.

    Article  Google Scholar 

  • Klevecz RR, Dowse HB (2000) Tuning the transcriptome: basins of attraction in the yeast cell cycle. Cell Proliferation 33: 209–218.

    Article  PubMed  CAS  Google Scholar 

  • Klevecz RR, Pilliod J, Bolen J (1991) Autogenous formation of spiral waves by coupled chaotic attractors. Chronobiol Int 8: 6–13.

    Article  PubMed  CAS  Google Scholar 

  • Klevecz RR, Bolen J, Forrest G, Murray D (2004) A genomewide oscillation in transcription gates DNA replication and cell cycle. PNAS 101: 1200–1205.

    Article  PubMed  CAS  Google Scholar 

  • Konopka RJ, Benzer S (1971) Clock mutants of Drosophila melanogaster. Proc Natl Acad Sci USA 68: 2112–2116.

    Article  PubMed  CAS  Google Scholar 

  • Leloup J-C, Gonze D, Goldbeter A (2003) Limit cycle models for circadian rhythms based on transcriptional regulation in Drosophila and Neurospora. J Biol Rhythms 14: 433–448.

    Article  Google Scholar 

  • Levine J, Funes P, Dowse H, Hall J (2002) Signal analysis of behavioral and molecular cycles. Biomed Central Neurosci 3: 1.

    Google Scholar 

  • Li CM, Klevecz RR (2006) A rapid genome-scale response of the transcriptional oscillator to perturbation reveals a period-doubling path to phenotypic change. PNAS 103: 16254–16259.

    Article  PubMed  CAS  Google Scholar 

  • Lloyd D, Edwards S (1984) Epigenetic oscillations during the cell cycles of lower eukaryotes are coupled to a clock. In: Edmunds LN Jr (ed) Cell cycle clocks. Marcel Dekker, New York, pp 27–46.

    Google Scholar 

  • Lloyd D, Edwards S (1987) Temperature-compensated ultradian rhythms in lower eukaryotes: timers for cell cycles and circadian events? In: Pauly JE, Scheving LE (eds) Advances in chronobiology, Part A, Alan R Liss, New York, pp 131–151.

    Google Scholar 

  • Lloyd D, Kippert F (1987) A temperature-compensated ultradian clock explains temperature dependent quantal cell cycle times. In: Bowler K, Fuller BJ (eds) Temperature and animal cells. Cambridge University Press, Cambridge, pp 135–155 (Symp Soc Exp Biol 41).

    Google Scholar 

  • Lloyd D, Edwards SW, Fry JC (1982) Temperature compensated oscillations in respiration and cellular protein content in synchronous cultures of Acanthamoeba castellanii. Proc Natl Acad Sci USA 79: 3785–3788.

    Article  PubMed  CAS  Google Scholar 

  • Lloyd D, Murray DB (2007) Redox rhythmicity: clocks at the core of temporal coherence. BioEssays 29: 465–473.

    Article  PubMed  CAS  Google Scholar 

  • Michel U, Hardeland R (1985) On the chronobiology of Tetrahymena. III. Temperature compensation and temperature dependence in the ultradian oscillation of tyrosine aminotransferase. J Interdiscipl Cycle Res 16: 17–23.

    CAS  Google Scholar 

  • Njus D, Sulzman FM, Hastings JW (1974) Membrane model for the circadian clock. Nature 248: 116–120.

    Article  PubMed  CAS  Google Scholar 

  • Oatley K, Goodwin BC (1971) The explanation and investigation of biological rhythms. In: Colquhoun WP (ed) Biological rhythms and human performance. Academic, New York, pp 1–38.

    Google Scholar 

  • Paetkau V, Edwards R, Illner R (2006) A model for generating circadian rhythm by coupling ultradian oscillators. Theor Biol Med Model 3: 12.

    Article  PubMed  Google Scholar 

  • Pak WL (1975) Mutants affecting the vision of Drosophila melanogaster. In: King RC (ed) Handbook of genetics, vol 3. Plenum, New York, pp 703–733.

    Google Scholar 

  • Pak WL (1979) Study of photoreceptor function using Drosophila mutants. In: Breakfield XO (ed) Neurogenetics: genetic approaches to the nervous system. Elsevier/North Holland, New York, pp 67–79.

    Google Scholar 

  • Pavlidis T (1971) Populations of biochemical oscillators as circadian clocks. J Theor Biol 33: 319–338.

    Article  PubMed  CAS  Google Scholar 

  • Pittendrigh CS (1958) Adaptation, natural selection, and behavior. In: Roe A, Simpson GG (eds) Behavior and evolution. Yale University Press, New Haven, CT, pp 390–416.

    Google Scholar 

  • Power J, Ringo J, Dowse H (1995a) The effects of period mutations and light on the activity rhythms of Drosophila melanogaster. J Biol Rhythms 10: 267–280.

    Article  PubMed  CAS  Google Scholar 

  • Power J, Ringo J, Dowse H (1995b) The role of light in the initiation of circadian activity rhythms of adult Drosophila melanogaster. J Neurogenet 9: 227–238.

    Article  PubMed  CAS  Google Scholar 

  • Quinn TJ (1991) The BIPM and the accurate measurement of time. Proc of the IEEE: Special issue on time and frequency 79: 894–905.

    Google Scholar 

  • Reddy P, Zehring WA, Wheeler DA, Pirotta V, Hadfield C, Hall JC, Rosbash M (1984) Molecular analysis of the period locus in D. melanogaster and identification of a transcript involved in biological rhythms. Cell 38: 701–710.

    Article  PubMed  CAS  Google Scholar 

  • Riggs AD, Bourgeois S, Cohn M (1970) The lac repressor-operator interaction. 3. Kinetic studies. J Mol Biol 53: 401–417.

    Article  PubMed  CAS  Google Scholar 

  • Rosenwasser A, Adler N (1986) Structure and function in circadian timing systems: evidence for multiple coupled circadian oscillators. Neurosci Biobehav Rev 10: 413–448.

    Article  Google Scholar 

  • Rusak B (1977) The role of the suprachiasmatic nucleus in the generation of circadian rhythms in the golden hamster, Mesocricetus auratus. J Comp Physiol 118: 145–164.

    Article  Google Scholar 

  • Schwartz W, Zimmermann P (1990) Circadian timekeeping in BALB/c and C57BL/6 inbred mouse strains. J Neurosci 10: 3685–3694.

    PubMed  CAS  Google Scholar 

  • Sehgal A, Price J, Young M (1992) Ontogeny of a biological clock in Drosophila melanogaster. PNAS 89: 1423–1427.

    Article  PubMed  CAS  Google Scholar 

  • Smith RF, Konopka RJ (1981) Circadian clock phenotypes of chromosome aberration with a breakpoint at the per locus. Mol Gen Genet 185: 243–251.

    Article  Google Scholar 

  • Sobel D (1995) Longitude. Walker, New York.

    Google Scholar 

  • Steller H, Fischbach KF, Rubin G (1987) Disconnected: a locus required for neuronal pathway formation in the visual system of Drosophila. Cell 50: 1139–1153.

    Article  PubMed  CAS  Google Scholar 

  • Sullivan DB, Allan DW, Howe DA, Walls FL (1990) Characterization of clocks and oscillators. NIST technical note 1337. US Department of Commerce, National Institute of Standards and Technology.

    Google Scholar 

  • Tomioka K, Uwozumi K, Matsumoto N (1997) Light cycles given during development affect freerunning period of circadian locomotor rhythm of period mutants in Drosophila melanogaster. J Insect Physiol 43: 297–305.

    Article  PubMed  CAS  Google Scholar 

  • Tomioka K, Sakamoto M, Harui Y, Matsumoto N, Matsumoto A (1998) Light and temperature cooperate to regulate the circadian locomotor rhythm of wild type and period mutants of Drosophila melanogaster. J Insect Physiol 43: 297–305.

    Article  Google Scholar 

  • Tyson JJ, Alivisatos SGA, Richter O, Grün F, Schneider FW, Pavlidis T (1976) Mathematical background report. In: Hastings JW, Schweiger H-G (eds) The molecular basis of circadian rhythms. Dahlem Konferenzen, Berlin, pp 85–108.

    Google Scholar 

  • Webb W, Dube M (1981) Temporal characteristics of sleep. In: Aschoff J (ed) Biological rhythms. Plenum, New York, pp 499–522 (Handbook of behavioral neurobiology, vol 4).

    Google Scholar 

  • White L, Ringo J, Dowse H (1991) A circadian clock of Drosophila: effects of deuterium oxide and mutations at the period locus. Chronobiol Int 9: 250–259.

    Article  Google Scholar 

  • Winfree AT (1980) The geometry of biological time. Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  • Wollnik F, Turek F (1989) SCN lesions abolish ultradian and circadian components of activity rhythms in LEW/Ztm rats. Am J Physiol 25: R1027–R1039.

    Google Scholar 

  • Wollnik F, Gartner K, Buttner D (1987) Genetic analysis of circadian and ultradian locomotor activity rhythms in laboratory rats. Behav Genet 17: 167–178.

    Article  PubMed  CAS  Google Scholar 

  • Zerr DM, Hall JC, Rosbash M Siwicki KK (1990) Circadian fluctuations of period protein immunoreactivity in the CNS and the visual system of Drosophila. J Neurosci 10: 2749–2762.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Dowse, H.B. (2008). Mid-range Ultradian Rhythms in Drosophila and the Circadian Clock Problem. In: Lloyd, D., Rossi, E.L. (eds) Ultradian Rhythms from Molecules to Mind. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8352-5_8

Download citation

Publish with us

Policies and ethics