Skip to main content

Abstract

A mitochondrial oscillator dependent on reactive oxygen species (ROS) was first described in heart cells. Available evidence now indicates that mitochondrial energetic variables oscillate autonomously as part of a network of coupled oscillators under both physiological and pathological conditions. Moreover, emerging experimental and theoretical evidence indicates that mitochondrial network oscillations exhibit a wide range of frequencies, from milliseconds to hours, instead of a dominant frequency. With metabolic stress, the frequency spectrum narrows and a dominant oscillatory frequency appears, indicating the transition from physiological to pathophysiological behavior.

Here we show that in the pathophysiological regime the mitochondrial oscillator of heart cells is temperature compensated within the range of 25–37°C with a Q10 = 1.13. At temperatures higher than 37°C, the oscillations stop after a few cycles, whereas at temperatures lower than 25°C the oscillations are asynchronous. Using our mitochondrial oscillator model we show that this temperature compensation can be explained by kinetic compensation. Furthermore, we show that in the physiological domain temperature compensation acts to preserve the broad range of frequencies exhibited by the network of coupled mitochondrial oscillators.

The results obtained indicate that the mitochondrial network behaves with the characteristics of a biological clock, giving rise to the intriguing hypothesis that it may function as an intracellular timekeeper across multiple time scales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, R. W., Laval-Martin, D. L. and Edmunds, L. N., Jr. (1985). Cell cycle oscillators. Temperature compensation of the circadian rhythm of cell division in Euglena. Exp Cell Res 157, 144–158.

    Article  PubMed  CAS  Google Scholar 

  • Aon, M. A., Cortassa, S., Marban, E. and O’Rourke, B. (2003). Synchronized whole cell oscillations in mitochondrial metabolism triggered by a local release of reactive oxygen species in cardiac myocytes. J Biol Chem 278, 44735–44744.

    Article  PubMed  CAS  Google Scholar 

  • Aon, M. A., Cortassa, S. and O’Rourke, B. (2004). Percolation and criticality in a mitochondrial network. Proc Natl Acad Sci USA 101, 4447–4452.

    Article  PubMed  CAS  Google Scholar 

  • Aon, M. A., Cortassa, S. and O’Rourke, B. (2006). The fundamental organization of cardiac mitochondria as a network of coupled oscillators. Biophys J 91, 4317–4327.

    Article  PubMed  CAS  Google Scholar 

  • Aon, M. A., Cortassa, S. and O’Rourke, B. (2007a). On the network properties of mitochondria. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

    Google Scholar 

  • Aon, M. A., Cortassa, S. and O’Rourke, B. (2007b). Mitochondrial oscillations in physiology and pathophysiology. Austin, TX: Landes Bioscience.

    Google Scholar 

  • Balaban, R. S., Nemoto, S. and Finkel, T. (2005). Mitochondria, oxidants, and aging. Cell 120, 483–495.

    Article  PubMed  CAS  Google Scholar 

  • Beavis, A. D. and Powers, M. (2004). Temperature dependence of the mitochondrial inner membrane anion channel: the relationship between temperature and inhibition by magnesium. J Biol Chem 279, 4045–4050.

    Article  PubMed  CAS  Google Scholar 

  • Betz, A. and Chance, B. (1965). Influence of Inhibitors and temperature on the oscillation of reduced pyridine nucleotides in yeast cells. Arch Biochem Biophys 109, 579–584.

    Article  PubMed  CAS  Google Scholar 

  • Cadenas, E. (2004). Mitochondrial free radical production and cell signaling. Mol Aspects Med 25, 17–26.

    Article  PubMed  CAS  Google Scholar 

  • Casolo, G., Balli, E., Taddei, T., Amuhasi, J. and Gori, C. (1989). Decreased spontaneous heart rate variability in congestive heart failure. Am J Cardiol 64, 1162–1167.

    Article  PubMed  CAS  Google Scholar 

  • Chance, B. and Yoshioka, T. (1966). Sustained oscillations of ionic constituents of mitochondria. Arch Biochem Biophys 117, 451–465.

    Article  PubMed  CAS  Google Scholar 

  • Cortassa, S., Aon, M. A., Marban, E., Winslow, R. L. and O’Rourke, B. (2003). An integrated model of cardiac mitochondrial energy metabolism and calcium dynamics. Biophys J 84, 2734–2755.

    Article  PubMed  CAS  Google Scholar 

  • Cortassa, S., Aon, M. A., Winslow, R. L. and O’Rourke, B. (2004). A mitochondrial oscillator dependent on reactive oxygen species. Biophys J 87, 2060–2073.

    Article  PubMed  CAS  Google Scholar 

  • Droge, W. (2002). Free radicals in the physiological control of cell function. Physiol Rev 82, 47–95.

    PubMed  CAS  Google Scholar 

  • Edmunds, L. N., Jr. (1988). Cellular and molecular basis of biological clocks: models and mechanisms for circadian timekeeping. New York: Springer.

    Google Scholar 

  • Ewing, D. J. (1991). Heart rate variability: an important new risk factor in patients following myocardial infarction. Clin Cardiol 14, 683–685.

    Article  PubMed  CAS  Google Scholar 

  • Finkel, T. and Holbrook, N. J. (2000). Oxidants, oxidative stress and the biology of ageing. Nature 408, 239–247.

    Article  PubMed  CAS  Google Scholar 

  • Finkel, T. (2005). Opinion: radical medicine: treating ageing to cure disease. Nat Rev Mol Cell Biol 6, 971–976.

    Article  PubMed  CAS  Google Scholar 

  • Franck, U. F. (1980). The Teorell membrane oscillator–a complete nerve model. Ups J Med Sci 85, 265–282.

    Article  PubMed  CAS  Google Scholar 

  • Goldberger, A. L., Bhargava, V., West, B. J. and Mandell, A. J. (1985). On a mechanism of cardiac electrical stability. The fractal hypothesis. Biophys J 48, 525–528.

    Article  PubMed  CAS  Google Scholar 

  • Haddad, J. J. (2004). Oxygen sensing and oxidant/redox-related pathways. Biochem Biophys Res Commun 316, 969–977.

    Article  PubMed  CAS  Google Scholar 

  • Harman, D. (1956). Aging: a theory based on free radical and radiation chemistry. J Gerontol 11, 298–300.

    PubMed  CAS  Google Scholar 

  • Harman, D. (1972). The biologic clock: the mitochondria? J Am Geriatr Soc 20, 145–147.

    PubMed  CAS  Google Scholar 

  • Kirkwood, T. (1999). Time of our lives: the science of human aging. New York: Oxford University Press.

    Google Scholar 

  • Kirkwood, T. B. (2005). Understanding the odd science of aging. Cell 120, 437–447.

    Article  PubMed  CAS  Google Scholar 

  • Klevecz, R. R., Bolen, J., Forrest, G. and Murray, D. B. (2004). A genome wide oscillation in transcription gates DNA replication and cell cycle. Proc Natl Acad Sci USA 101, 1200–1205.

    Article  PubMed  CAS  Google Scholar 

  • Kuramoto, Y. (1984). Chemical oscillations, waves, and turbulence. Berlin: Springer.

    Google Scholar 

  • Lane, N. (2002). Oxygen: the molecule that made the world. New York: Oxford University Press.

    Google Scholar 

  • Lane, N. (2005). Power, sex, suicide: mitochondria and the meaning of life. Oxford: Oxford University Press.

    Google Scholar 

  • Lloyd, D. (1998). Circadian and ultradian clock-controlled rhythms in unicellular microorganisms. Adv Microb Physiol 39, 291–338.

    Article  PubMed  CAS  Google Scholar 

  • Lloyd, D. (2007). Respiratory oscillations in yeast. Austin, TX: Landes Bioscience.

    Google Scholar 

  • Lloyd, D. and Murray, D. B. (2006). The temporal architecture of eukaryotic growth. FEBS Lett 580, 2830–2835.

    Article  PubMed  CAS  Google Scholar 

  • Lloyd, D. and Murray, D. B. (2007). Redox rhythmicity: clocks at the core of temporal coherence. BioEssays 29, 465–473.

    Article  PubMed  CAS  Google Scholar 

  • Lloyd, D., Aon, M. A. and Cortassa, S. (2001). Why homeodynamics, not homeostasis? ScientificWorldJournal 1, 133–145.

    Article  PubMed  CAS  Google Scholar 

  • Mair, T., Warnke, C., Tsuji, K. and Muller, S. C. (2005). Control of glycolytic oscillations by temperature. Biophys J 88, 639–646.

    Article  PubMed  CAS  Google Scholar 

  • Marin-Garcia, J. and Goldenthal, M. J. (2004). Heart mitochondria signaling pathways: appraisal of an emerging field. J Mol Med 82, 565–578.

    Article  PubMed  Google Scholar 

  • Morel, Y. and Barouki, R. (1999). Repression of gene expression by oxidative stress. Biochem J 342(Pt 3), 481–496.

    Article  PubMed  CAS  Google Scholar 

  • Murray, D. B., Roller, S., Kuriyama, H. and Lloyd, D. (2001). Clock control of ultradian respiratory oscillation found during yeast continuous culture. J Bacteriol 183, 7253–7259.

    Article  PubMed  CAS  Google Scholar 

  • Pittendrigh, C. S. (1993). Temporal organization: reflections of a Darwinian clock-watcher. Annu Rev Physiol 55, 16–54.

    Article  PubMed  CAS  Google Scholar 

  • Roussel, M. R. and Lloyd, D. (2007). Observation of a chaotic multioscillatory metabolic attractor by real-time monitoring of a yeast continuous culture. FEBS J 274, 1011–1018.

    Article  PubMed  CAS  Google Scholar 

  • Ruoff, P., Christensen, M. K., Wolf, J. and Heinrich, R. (2003). Temperature dependency and temperature compensation in a model of yeast glycolytic oscillations. Biophys Chem 106, 179–192.

    Article  PubMed  CAS  Google Scholar 

  • Skinner, J. E., Pratt, C. M. and Vybiral, T. (1993). A reduction in the correlation dimension of heartbeat intervals precedes imminent ventricular fibrillation in human subjects. Am Heart J 125, 731–743.

    Article  PubMed  CAS  Google Scholar 

  • Strogatz, S. H. (2003). Sync: the emerging science of spontaneous order. New York: Hyperion.

    Google Scholar 

  • Sweeney, B. M. and Hastings, J. W. (1960). Effects of temperature upon diurnal rhythms. Cold Spring Harb Symp Quant Biol 25, 87–104.

    PubMed  CAS  Google Scholar 

  • Turrens, J. F. (2003). Mitochondrial formation of reactive oxygen species. J Physiol 552, 335–344.

    Article  PubMed  CAS  Google Scholar 

  • West, B. J. (1999). Physiology, promiscuity and prophecy at The Millennium: A tale of tails. Singapore: World Scientific.

    Google Scholar 

  • Winfree, A. T. (1967). Biological rhythms and the behavior of populations of coupled oscillators. J Theor Biol 16, 15–42.

    Article  PubMed  CAS  Google Scholar 

  • Wright, A. F., Jacobson, S. G., Cideciyan, A. V., Roman, A. J., Shu, X., Vlachantoni, D., McInnes, R. R. and Riemersma, R. A. (2004). Lifespan and mitochondrial control of neurodegeneration. Nat Genet 36, 1153–1158.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Aon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Aon, M.A., Cortassa, S., O’Rourke, B. (2008). Is There a Mitochondrial Clock?. In: Lloyd, D., Rossi, E.L. (eds) Ultradian Rhythms from Molecules to Mind. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8352-5_5

Download citation

Publish with us

Policies and ethics