Skip to main content

ENOX Proteins, Copper Hexahydrate-Based Ultradian Oscillators of the Cells’ Biological Clock

  • Chapter
Ultradian Rhythms from Molecules to Mind

Abstract

A homodimeric, growth-related and time-keeping hydroquinone [NAD(P)H] oxidase of the mammalian (and plant) cell surface with a binuclear copper center and protein disulfide-thiol interchange activity has characteristics of an ultradian driver of the biological 24h circadian clock. A member of the ECTO-NOX or ENOX protein family, the constitutive ENOX, EN0X1 (EntrezGene ID 55068 NCBI Gen Bank accession Number EF432052), exhibits a recurring complex 2 + 3 set of oscillations in secondary structure, enzymatic activity and redox potential with a period length of 24min (repeats 60 times over 24h). The period length is temperature independent and entrained by light, melatonin and low frequency EMF. COS cells transformed with ENOX2 (EntrezGene ID 10495) where specific cysteine codons were replaced by alanine codons, ENOX2 oscillations with period lengths of 22, 36 or 42min yielded circadian periods of 22, 36 or 42h respectively, based on activity of glyceraldehyde-3-phosphate dehydrogenase. The oscillations require bound copper and are recapitulated in solution by copper salts. The period length of both the ENOX and copper II oscillations in D2O is increased to 30min (Organisms grown in deuterium oxide exhibit a 30h circadian day.). The oscillatory pattern appears to be determined by periodic variations in the ratios of ortho and para nuclear spins of the paired hydrogen or deuterium atoms of the elongated octahedral structure of the protein bound copper II hexahydrate as determined by spectroscopic analyses. That the oscillations result from physical rather than chemical events account, for the first time, for the temperature independence of the period length of clock-related pheonomena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe M, Herzog ED, Block GD (2000) Lithium lengthens the circadian period of individual suprachiasmatic nucleus neurons. Neuroreport 11:3261–3264.

    PubMed  Google Scholar 

  • Andrade RP, Palmeirim I, Bajanca F (2007) Molecular clocks underlying vertebrate embryo segmentation: a 10-year-old hairy-go-round. Birth Defects Res C Embryo Today 81:65–83.

    PubMed  Google Scholar 

  • Atkinson M, Kripke DF, Wolf SR (1975) Autorhythmometry in manic-depressives. Chronobiologia 2:325–335.

    PubMed  Google Scholar 

  • Benedetti F, Barbini B, Campori E, Fulgosi MC, Pontiggia A, Colombo C (2001) Sleep phase advance and lithium to sustain the antidepressant effect of total sleep deprivation inbipolar depression: new findings supporting the internal coincidence model? J Psychiatr Res 35:323–329.

    PubMed  Google Scholar 

  • Bersuker IB (1984) Modern Chemistry. Plenum, New York.

    Google Scholar 

  • Binhi VN, Stepanov EV (2000) Tunable diode-laser spectroscopy of the para- and ortho-water vapour as a tool for investigation of metastable states of liquid water. In: Kostarakis P, Stavrolakis P (eds), Millennium International Workshop on Biological Effects of Electro- magnetic Fields, Heraklion, Crete, Greece, October 17–20, pp 153–154, ISBN 9608673305.

    Google Scholar 

  • Bridge A, Barr R, Morré DJ (2000) The plasma membrane NADH oxidase of soybean has vitamin K(1) hydroquinone oxidase activity. Biochim Biophys Acta 1463:448–458.

    PubMed  Google Scholar 

  • Brightman AO, Barr R, Crane FL, Morré DJ (1988) Auxin-stimulated NADH oxidase purified from plasma membrane of soybean. Plant Physiol 86:1264–1269.

    PubMed  Google Scholar 

  • Brown FA (1977) Geographic orientation, time and mudsnail phototaxis. Biol Bull 152:311–324.

    Google Scholar 

  • Brown FA, Chow CK (1973) Lunar correlated variations in water uptake by bean seeds. Biol Bull 145:265–278.

    Google Scholar 

  • Bruce VG, Pittendrigh CS (1960) Temperature independence in a unicellular “clock”. J Cell Comp Physiol 56:256–231.

    Google Scholar 

  • Bunning E, Baltes J (1963) Zur Wirkung von schwerem Wasser au die endogene Tagersrhythmik. Naturwissenschaften 50:622.

    Google Scholar 

  • Buntkowsky G, Walaszek B, Adamczyk A, Xu Y, Limbach H-H, Chaudret B (2006) Mechanism of nuclear spin initiated para-H2 to ortho-H2 conversion. Phys Chem Chem Phys 8:1929–1935.

    PubMed  Google Scholar 

  • Byus CV, Kartun K, Pieper S, Adey WR (1988) Increased ornithine decarboxylase activity in cultured cells exposed to low energy modulated microwave fields and phorbol ester tumor promoters. Cancer Res 48: 4222–4226.

    PubMed  Google Scholar 

  • Chakkalakal DA, Mollner TJ, Bogard MR, Fritz ED, Novak JR, McGuire MH (1999) Magnetic field induced inhibition of human osteosarcoma cells treated with adriamycin. Cancer Biochem Biophys 17:89–98.

    PubMed  Google Scholar 

  • Chueh P-J, Kim C, Cho N, Morré DM, Morré DJ (2002a) Molecular cloning and characterization of a tumor-associated, growth-related, and time-keeping hydroquinone (NADH) oxidase (tNOX) of the HeLa cell surface. Biochemistry 41:3732–3742.

    PubMed  Google Scholar 

  • Chueh P-J, Morré DM, Morré DJ (2002b) A site-directed mutagenesis analysis of tNOX functional domains. Biochim Biophys Acta 1594:74–83.

    PubMed  Google Scholar 

  • Del Castillo-Olivares A, Yantiri F, Chueh P-J, Wang S, Sweeting M, Sedlak D, Morré DJ, Burgess J, Morré DM (1998) A drug-responsive and protease-resistant peripheral NADH oxidase complex from the surface of HeLa S cells. Arch Biochem Biophys 358:125–140.

    PubMed  Google Scholar 

  • Dowse HB, Palmer JD (1972) The chronomutagenic effect of deuterium oxide on the period and entrainment of a biological rhythm. Biol Bull 143:513–524.

    PubMed  Google Scholar 

  • Dunlap JC (1996) Genetics and molecular analysis of circadian rhythms. Annu Rev Genetics 30:576–601.

    Google Scholar 

  • Edmunds Jr. LN (1988) Cellular and Molecular Basis of Biological Clocks. Springer, New York/Berlin/Heidelberg, Germany p 497.

    Google Scholar 

  • Emsley JM, Feeney J, Sutcliffe LH (1965). High Resolution Nuclear Magnetic Resonance Spectroscopy, vol 1. Pergamon, Oxford.

    Google Scholar 

  • Engelmann W (1972) Lithium slows down the Kalanchoe clock. Z Naturforsch 27B:477.

    Google Scholar 

  • Engelmann W (1973) A slowing down of circadian rhythms by lithium ions. Z Naturforsch 28:733–736.

    Google Scholar 

  • Enright JT (1997) Heavy water slows biological timing processes. Z Vergl Physiol 72:1–16.

    Google Scholar 

  • Fedrowitz M, Westermann J, Loscher W (2002) Magnetic field exposure increases cell proliferation but does not affect melatonin levels in the mammary gland of female Sprague Dawley rats. Cancer Res 62:1356–1363.

    PubMed  Google Scholar 

  • Fesenko EE, Gluvstein AY (1995) Changes in the state of water, induced by radiofrequency electromagnetic fields. FEBS Lett 367:53–55.

    PubMed  Google Scholar 

  • Filipponi A, D’Angelo P, Pavel NV, Di Ciecco A (1994) Triplet correlations in the hydration shell of aquaions. Chem Phys Lett 225:150–155.

    Google Scholar 

  • Franke WW, Kartenbeck J (1976) Some principles of membrane differentiation. In: Müller-Bérat (ed), Progress in Differentiation Research. Elsevier/North-Holland, New York, pp 213–243.

    Google Scholar 

  • Fulton JL, Hoffman MM, Darab JG, Palmer BJ, Stein EA (2000) Copper (I) and copper (II) coordination structure under hydrothermal conditions at 325°C: an X-ray absorption fine structure and molecular dynamics study. J Phys Chem A 104:11651–11663.

    Google Scholar 

  • Gilberger T-W, Walter RD, Müller S (1997) Identification and characterization of the functional amino acids at the active site of the large thioredoxin reductase from Plasmodium falciparum. J Biol Chem 272:29584–29589.

    PubMed  Google Scholar 

  • Gilberger T-W, Bergmann B, Walter RD, Müller S (1998) The role of the C-terminus for catalysis of the large thioredoxin reductase from Plasmodium falciparum. FEBS Lett 425:407–410.

    PubMed  Google Scholar 

  • Goodman R, Chizmadzhev Y, Shirley-Henderson A (1993) Electromagnetic fields and cells. J Cell Biochem 51:436–441.

    PubMed  Google Scholar 

  • Graham JM, Sumner MCB, Curtis DH, Pasternak CA (1973) Sequence of events in plasma membrane assembly during the cell cycle. Nature 246:291–295.

    PubMed  Google Scholar 

  • Griffith JS (1967) Self replication and scrapie. Nature 215:1043–1044.

    PubMed  Google Scholar 

  • Henshaw DL (2002) Does our electricity distribution system pose a serious risk to public health? Med Hypotheses 59:39–51.

    PubMed  Google Scholar 

  • Hofmann K, Gunderoth-Palmowski M, Wiedenmann G, Engelmann W (1978) Further evidence for period lengthening effect of Li + on circadian rhythms. Z Naturforsch 33C:231–234.

    Google Scholar 

  • Iancu I, Olmer A, Strous RD (2007) Caffeinism: history, clinical features, diagnosis, and treatment. In: Smith BD, Gupta U, Gupta BS (eds), Cafeine and Activation Theory. CRC, Boca Raton, FL/London/New York, pp 331–347.

    Google Scholar 

  • Jiang Z, Morré DM, Morré DJ (2006) A role for copper in biological time-keeping. J Inorg Biochem 100:2140–2149.

    PubMed  Google Scholar 

  • Kelker M, Kim C, Chueh P-J, Guimont R, Morré DM and Morré DJ (2001) Cancer isoform of a tumor-associated cell surface NADH oxidase (tNOX) has properties of a prion. Biochemistry 40:7351–7354.

    PubMed  Google Scholar 

  • Kim C, Morré DJ (2004) Prion proteins and ECTO-NOX proteins exhibit similar oscillating redox activities. J Biochem Biophys Res Comm 315:1140–1146.

    Google Scholar 

  • Kim C, Layman S, Morré DM, Morré DJ (2005) Fourier transform infrared and circular dichroism spectroscopic analysis underlie tNOX periodic oscillations. Nonlinearity Biol, Toxicol Med (now Dose Response) 3: 391–413.

    Google Scholar 

  • Kishi T, Morré DM, Morré DJ (1999) The plasma membrane NADH oxidase of HeLa cells has hydroquinone oxidase activity. Biochim Biophys Acta 1412:66–77.

    PubMed  Google Scholar 

  • Kliman RN, Hey J (1993) DNA sequence variation at the period locus within and among species of the Drosophila melanogaster complex. Genetics 133:375–387.

    PubMed  Google Scholar 

  • Korshin GV, Frenkal AI, Stern EA (1998) EXAFS study of the inner shell structure in copper (II) complexes with humic substances. Envir Sci Technol 32:2699–2705.

    Google Scholar 

  • Kripke DF, Wyborney VG (1980) Lithium slows rat circadian activity rhythms. Life Sci 26:1319–1321.

    PubMed  Google Scholar 

  • Kripke DF, Judd LL, Hubbard B, Janowsky DS, Huey LF (1979) The effect of lithium carbonate on the circadian rhythm of sleep in normal human subjects. Biol Psychiatry 14:545–548.

    PubMed  Google Scholar 

  • Kripke DF, Mullaney DJ, Atkinson ML, Wolf S (1978) Circadian rhythm disorder in manic-depressives. Biol Psychiatr 13:335–351.

    Google Scholar 

  • Kromkowski, J, Hignite H, Morré DM, Morré DJ (2008) Response to lithium of a cell surface ECTO-NOX protein with time-keeping characteristics. Neurosci Lett 438:121–125.

    PubMed  Google Scholar 

  • Kummer JT (1962) Ortho-para hydrogen conversion by metal surfaces at 21°K. J Phys Chem 66:1715.

    Google Scholar 

  • Lambeth JD, Cheng G; Arnold RS, Edens WA (2000) Novel homologs of gp91phox. TIBS 25:459–461.

    PubMed  Google Scholar 

  • Levi F, (2000) Marked 24-h rest/activity rhythms are associated with better quality of life, better response, and longer survival in patients with metastatic colorectal cancer and good performance status. Clin. Cancer Res 6:3038–3045.

    PubMed  Google Scholar 

  • Levi F (2002) From circadian rhythms to cancer chemotherapeutics. Chronobiol Int 25:459–461.

    Google Scholar 

  • Lobyshev VI, Shikhlinskaya RE, Ryzhikov BD (1999) Experimental evidence for intrinsic luminescence of water. J Mol Liquids 82:73–81.

    Google Scholar 

  • Lyle DB, Ayotte RD, Sheppard AR, Adey WR (1988) Suppression of T-lymphocyte cytotoxicity following exposure to 60-Hz sinusoidal electric fields. Bioelectromagnetics 9:303–313.

    PubMed  Google Scholar 

  • Matanoski GM (1995) Electromagnetic fields: biological interactions and mechanisms. In: Blank M (ed), Advances in Chemistry 250:157–190.

    Google Scholar 

  • McDaniel M, Sulzman FM, Hastings JW (1974) Heavy water slows the Gonyaulax clock: a test of the hypothesis that D2O affects circadian oscillations by diminishing the apparent temperature. Proc Natl Acad Sci USA 71:4389–4391.

    PubMed  Google Scholar 

  • Milenkl YY, Sibileva RN, Strzhemechny MA (1997) Natural ortho-para conversion rate in liquid and gaseous hydrogen. J Low Temp Phys 107:77–82.

    Google Scholar 

  • Millet B, Badot PM (1996) The revolving movement mechanism in Phaseolus: new approaches to old questions. In: Greppin H, Agosti RD, Bonzon M (eds), Vistas on Biorhythmicity. University of Geneva Press, Geneva, pp 77–98.

    Google Scholar 

  • Minorsky PV (2007) Solar-terrestrial effects on bean seed inhibition. Poster Abstracts. Am Soc Plant Biologists p186.

    Google Scholar 

  • Mitchison JM (1971) The Biology of the Cell Cycle. Cambridge University Press, Cambridge.

    Google Scholar 

  • Mormont MC, Waterhouse J, Bleuzen P, Giacchetti S, Jami A, Bogdan A, Lellouch J, Misset JL, Touitou Y, Levi F (2000) Marked 24-h rest/activity rhythms are associated with better quality of life, better response, and longer survival in patients with metastatic colorectal cancer and good performance status. Clin Cancer Res 6:3038–3045.

    PubMed  Google Scholar 

  • Morré DJ (1998) NADH oxidase: a multifunctional ectoprotein of the eukaryotic cell surface. In: Asard H, Bérczi A, Caubergs RJ (eds), Plasma Membrane Redox Systems and Their Role in Biological Stress and Disease. Kluwer, Dordrecht, The Netherlands, pp 121–156.

    Google Scholar 

  • Morré DJ, Morré DM (1998) NADH oxidase activity of soybean plasma membranes oscillates with a temperature compensated period of 24 min. Plant J 16:279–284.

    Google Scholar 

  • Morré DJ, Grieco PA (1999) Glaucarubolone and simalikalactone D, respectively, preferentially inhibit auxin-induced and constitutive components of plant cell enlargement and the plasma membrane NADH oxidase. Int J Plant Sci 160:291–297.

    Google Scholar 

  • Morré DJ, Morré DM (2003a) Cell surface NADH oxidases (ECTO-NOX proteins) with roles in cancer, cellular time-keeping, growth, aging and neurodegenerative diseases. Free Radical Res 37:795–808.

    Google Scholar 

  • Morré DJ, Morré DM (2003b) The plasma membrane-associated NADH oxidase (ECTO-NOX) of mouse skin responds to blue light. J Photochem Photobiol B 70:7–12.

    PubMed  Google Scholar 

  • Morré DJ, Navas P, Penel C, Castillo FJ (1986) Auxin-stimulated NADH oxidase (semidehydroascorbate reductase) of soybean plasma membrane: role in acidification of cytoplasm? Protoplasma 133:195–197.

    Google Scholar 

  • Morré DJ, de Cabo R, Jacobs E, Morré DM (1995) Auxin-modulated protein disulfide-thiol interchange activity from soybean plasma membrane. Plant Physiol 109:573–578.

    PubMed  Google Scholar 

  • Morré DJ, Chueh P-J, Lawler J, Morré DM (1998) The sulfonylurea-inhibited NADH oxidase activity of HeLa cell plasma membranes has properties of a protein disulfide-thiol oxidoreductases with protein disulfide-thiol intherchange activity. J Bioenerg Biomembr 30:477–487.

    PubMed  Google Scholar 

  • Morré DJ, Gomez-Rey ML, Schramke C, Em O, Lawler J, Hobeck J, Morré DM (1999a) Use of dipyridyl-dithio substrates to measure directly the protein disulfide-thiol interchange activity of the auxin stimulated NADH: protein disulfide reductase of soybean plasma membranes. Mol Cell Biochem 200:7–13.

    PubMed  Google Scholar 

  • Morré DJ, Morré DM, Penel C, Greppin H (1999b) NADH oxidase periodicity of spinach leaves synchronized by light. Int J Plant Sci 160:855–860.

    PubMed  Google Scholar 

  • Morré DJ, Pogue R, Morré DM (2001a) Soybean cell enlargement oscillates with a temperature-compensated period length of ca 24 min. In Vitro Cell Dev Biol-Plant 37:19–23.

    PubMed  Google Scholar 

  • Morré DJ, Sedlak D, Tang X, Chueh P-J, Geng T, Morré DM (2001b) Surface NADH oxidase of HeLa cells lacks intrinsic membrane binding motifs. Arch Biochem Biophys 392:251–256.

    PubMed  Google Scholar 

  • Morré DJ, Chueh P-J, Pletcher J, Tang X, Wu L-Y, Morré DM (2002a) Biochemical basis for the biological clock. Biochemistry 41:11941–11945.

    PubMed  Google Scholar 

  • Morré DJ, Lawler J, Wang S, Keenan TW, Morré DM (2002b) Entrainment in solution of an oscillating NADH oxidase activity from the bovine milk fat globule membrane with a temperature-compensated period length suggestive of an ultradian time-keeping (clock) function. Biochim Biophys Acta 155:10–20.

    Google Scholar 

  • Morré DJ, Penel C, Greppin H, Morré DM (2002c) The plasma membrane-associated NADH oxidase of spinach leaves responds to blue light. Int J Plant Sci 163:543–547.

    PubMed  Google Scholar 

  • Morré DJ, Ternes P, Morré DM (2002d) Cell enlargement of plant tissue explants oscillates with a temperature-compensated period length of ca 24 min. In Vitro Cell Dev Biol–Plant 38:18–28.

    PubMed  Google Scholar 

  • Morré DJ, Morré DM, Ternes P (2003) Auxin-activated NADH oxidase activity of soybean plasma membranes is distinct from the constitutive plasma membrane NADH oxidase and exhibits prion-like properties. In Vitro Cell Dev Biol–Plant 39:368–376.

    PubMed  Google Scholar 

  • Morré DJ, Kim C, Hicks-Berger C (2006) ATP-dependent and drug-inhibited vesicle enlargement reconstituted using synthetic lipids and recombinant proteins. BioFactors 28:105–117.

    PubMed  Google Scholar 

  • Morré DJ, Heald S, Coleman J, Orczyk J, Jiang Z, Morré DM (2007) Structural observations of time dependent oscillatory behavior of CuIICl2 solutions measured via extended X-ray absorption fine structure. J Inorg Biochem 100:715–726.

    Google Scholar 

  • Morré DJ, Orczyk J, Hignite H, Kim C (2008a) Regular oscillatory behavior of aqueous solutions of CuII salts related to effects on equilibrium dynamics of ortho/para hydrogen spin isomers of water. J Inorg Biochem 102:260–267.

    PubMed  Google Scholar 

  • Morré DJ, Jiang Z, Marjanovic M, Orczyk J, Morré DM (2008b) “Response of the regulatory oscillatory behavior of copperII-containing ECTO-NOX proteins and of CuIICl2 in solution to electromagnetic fields” for Journal of Inorganic Biochemistry is now available on line at http://dx/doi.org/10.1016/j.jinorgbio.2008.06.001.

  • Mumma MJ, Weaver HA, Larson HP (1987) The ortho-para ratio of water vapor in comet P/Halley. Astron Astrophys 187:419–424.

    Google Scholar 

  • Ohnishi K, Niimura Y, Hidaka M, Masaki H, Suzuki H, Uozumi T, Nishino T (1995) Role of cysteine 337 and cysteine 340 in flavoprotein that functions as NADH oxidase from Amphibacillus xylanus studied by site-directed mutagenesis. J Biol Chem 270:5812–5817.

    PubMed  Google Scholar 

  • Palmer JD, Dowse HB (1969) Preliminary findings on the effect of D2O on the period of circadian activity rhythms. Biol Bull 137:388 (Abstract).

    Google Scholar 

  • Pittendrigh CS, Caldarola PC, Cosbey ES (1973) A differential effect of heavy water on temperature-dependent and temperature-compensated aspects of circadian system of Drosophila pseudoobscura. Proc Natl Acad Sci USA 70:2037–2041.

    PubMed  Google Scholar 

  • Pogue R, Morré DM, Morré DJ (2000) CHO cell enlargement oscillates with a temperature-compensated period of 24 min. Biochim Biophys Acta 1498:44–51.

    PubMed  Google Scholar 

  • Potekhin SA, Khusainova RS (2005) Spin-dependent absorption of water molecules. Biophys Chem 118:84–87.

    PubMed  Google Scholar 

  • Prusiner SB, Scott MR, DeArmon MR, Cohen FE (1998) Prion protein biology. Cell 93:337–348.

    PubMed  Google Scholar 

  • Richter CP (1977) Heavy water as a tool for study of the forces that control length of period of the 24-hour clock of the hamster. Proc Natl Acad Sci USA 74:1295–1299.

    PubMed  Google Scholar 

  • Ruggiero M, Bottaro DP, Liguri G, Gulisano M, Peruzzi B, Pacini S (2004) 0.2 T magnetic field inhibits angiogenesis in chick embryo chorioallantoic membrane. Bioelectromagnetics 25:390–396.

    PubMed  Google Scholar 

  • Russel M, Model P (1988) Sequence of thioredoxin reductase from Escherichia coli. Relationship to other flavoprotein disulfide oxidoreductases. J Biol Chem 263:9015–9019.

    PubMed  Google Scholar 

  • Santini MT, Rainaldi G, Ferrante A, Indovina PL, Vacchia P, Donelli G (2003) Effects of a 50 Hz sinusoidal magnetic field on cell adhesion molecule expression in two human osteosarcoma cell lines (MG-63 and Saos-2). Bioelectromagnetics 24:327–338.

    PubMed  Google Scholar 

  • Savitz DA (1995) Overview of occupational exposure to electric and magnetic fields and cancer: advancements in exposure assessment. Environ Health Perspect 103:69–74.

    PubMed  Google Scholar 

  • Sephton SE, Sapolsky RM, Kraemer HC, Spegal D (2000) Diurnal cortisol rhythm as a predictor of breast cancer survival. J Natl Cancer Inst 92:994–1000.

    PubMed  Google Scholar 

  • Shifley ET, Cole SE (2007) The vertebrate segmentation clock and its role in skeletal birth defects. Birth Defects Res C Embryo Today 81:121–133.

    PubMed  Google Scholar 

  • Simko M, Richard D, Kriehuber R, Weiss GG (2001) Micronucleus induction in Syrian hamster embryo cells following exposure to 50 Hz magnetic fields, benzo(a) pyrene, and TPA in vitro. Mutat Res 22:43–50.

    Google Scholar 

  • Sisken BF, Walker J, Orgel M (1993) Prospects on clinical applications of electrical stimulation for nerve regeneration. J Cell Biochem 52:404–409.

    Google Scholar 

  • Spruyt E, Verbelen JP, DeGruf JA (1987) Expression of circasepan and circammal rhythmicity in the inhibition of dry stored seeds. Plant Physiol 84:707–710.

    PubMed  Google Scholar 

  • Suter RB, Rawson KS (1968) Circadian activity rhythm of the deer mouse, Peromyscus: effect of deuterium oxide. Science 160:1011–1014.

    PubMed  Google Scholar 

  • Sweiczer A, Novak B, Mitchison JM (1996) The size control of fission yeast revisited. J Cell Sci 109:2947–2957.

    Google Scholar 

  • Thun-Battersby S, Mevissen M, Löscher W (1999) Exposure of Sprague-Dawley rats to a 50-Hertz, 100-microTesla magnetic field for 27 weeks facilitates mammary tumorigenesis in the 7, 12-dimethylbenz[a]-anthracene model of breast cancer. Cancer Res 59:3627–3633.

    PubMed  Google Scholar 

  • Tikhonov VI, Volkov AA (2002) Separation of water into its ortho and para isomers. Science 296:2363.

    PubMed  Google Scholar 

  • Wang S, Pogue R, Morré DM, Morré DJ (2001) NADH oxidase activity (NOX) and enlargement of HeLa cells oscillate with two different temperature-compensated period lengths of 22 and 24 minutes corresponding to different NOX forms. Biochim Biophys Acta 1539:192–204.

    PubMed  Google Scholar 

  • Welsh DK, Moore-Ede MC (1990) Lithium lengthens circadian period in a diurnal primate, Saimiri sciureus. Biol Psychiatry 28:117–126.

    PubMed  Google Scholar 

  • Whaley WG (1975) The Golgi Apparatus. Cell Biology Monographs, vol 2. Springer, Wien/New York, pp 190.

    Google Scholar 

  • Wigner EZ (1933) Mechanism of nuclear spin initiated para-H2 to ortho-H2 conversion. Phys Chem B 23:28.

    Google Scholar 

  • Wolf FI, Torsello A, Tedesco B, Fasanella S, Boninsegna A, D’Ascenzo M, Grassi C, Azzena GB, Cittadini A (2005) 50-Hz extremely low frequency electromagnetic fields enhance cell proliferation and DNA damage: possible involvement of a redox mechanism. Biochim Biophys Acta 1743:120–129.

    PubMed  Google Scholar 

  • Yagiz K, Wu L-Y, Kuntz CP, Morré DJ, Morré DM (2007) Mouse embryonic fibroblast cells from transgenic mice overexpressing tNOX express an altered growth and drug response phenotype. J Cell Biochem 101:295–306.

    PubMed  Google Scholar 

  • Yin L, Wang J, Klein PS, Lazar MA (2006) Nuclear receptor Rev-erbY is a critical lithium-sensitive component of the circadian clock. Science 311:1002–1005.

    PubMed  Google Scholar 

  • Yoshizawa H, Tsuchiya T, Mizoe H, Ozeki H, Kanao S, Yomori H, Sakane C, Hasebe S, Motomura T, Yamakawa T, Mizuno F, Hirose H, Otaka Y (2002) No effect of extremely low-frequency magnetic field observed on cell growth or initial response of cell proliferation in human cancer cell lines. Bioelectromagnetics 23:355–368.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Morré, D.J., Morré, D.M. (2008). ENOX Proteins, Copper Hexahydrate-Based Ultradian Oscillators of the Cells’ Biological Clock. In: Lloyd, D., Rossi, E.L. (eds) Ultradian Rhythms from Molecules to Mind. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8352-5_2

Download citation

Publish with us

Policies and ethics