Skip to main content

Abstract

This Chapter presents a brief overview of recent progress and indications of future trends in ultradian rhythm research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aon MA, Cortassa S, Lemar KM, Hayes AJ, Lloyd D (2007) Single cell and population oscillations in yeast. A 2-photon scanning laser microscopy study. FEBS Lett 581: 8–14.

    Article  PubMed  Google Scholar 

  • Bashford CL, Chance B, Lloyd D, Poole RK (1980) Oscillations of redox states in synchronously dividing cultures of Acanthamoeba castellanii and Schizosaccharomyces pombe. Biophys J 29: 1–12.

    Article  PubMed  Google Scholar 

  • Bhattacharjee V (2007) Is internal timing the key to mental health? Science 317: 1488–1490.

    Article  PubMed  Google Scholar 

  • Brodsky VY (1966) Protein Synthesis and Cell Functions (in Russian). Nauka, Moscow.

    Google Scholar 

  • Brodsky VY (1993) Rhythms of Protein Synthesis and Other Circahoralian Oscillations: The Possible Involvement of Fractals. In: D Lloyd and ER Ross (Eds.), Ultradian Rhythms in Life Processes. Springer, London, pp. 23–40.

    Google Scholar 

  • Bünning E, Chandrashekaran MK (1975) Pfeffer’s views on rhythms. Chronobiologia 2: 160–167.

    PubMed  Google Scholar 

  • Buonomano DV (2007) The biology of time across different time scales. Nature Chem Biol 3: 594–597.

    Article  Google Scholar 

  • Chance B (2004) Mitochondrial redox state, monitoring, discovery and deployment in tissue. Meth Enzymol 386: 361–370.

    Article  Google Scholar 

  • Chance B, Im J, Nioka S, Kushmeric M (2006) Skeletal muscle energetics with PNMR: personal views and historic perspectives NMR. Biomed 19: 904–926.

    Google Scholar 

  • Dowse HB, Ringo J (1987) Further evidence that the circadian clock in Drosophila is a population of coupled ultradian oscillators. J Biol Rhythm 2: 65076.

    Article  Google Scholar 

  • Foote R (2007) Mathematics and complex systems. Science 318: 410–412.

    Article  PubMed  Google Scholar 

  • Fuentes-Pardo B, Guzman-Gomez AM, Lara-Aparicio M, Lopez de Medrano S (2003) A qualitative model of a motor circadian rhythm. BioSystems 71: 61–69.

    Article  PubMed  Google Scholar 

  • Gilbert DA (1966) Isoenzymes and cell regulation. Discovery 27: 23–26.

    Google Scholar 

  • Gooch VD, Packer L (1974) Oscillatory systems in mitochondria. Biochem Biophys Acta 346: 245–260.

    PubMed  Google Scholar 

  • Harrison DEF, Chance B (1970) Fluorimetric technique for monitoring changes in the level of reduced nicotinamide nucleotides in continuous cultures. Appl Microbiol 19: 446–450.

    PubMed  Google Scholar 

  • Hildebrandt G (1979) Rhythmical functional order and man’s emancipation from the time factor. In KE Schaefer, G Hildebrandt and N Macbeth (Eds.), A New Image of Man in Medicine. 11 Basis of an Individual Physiology. Futura, Mount Kisco, New York, pp. 15–43.

    Google Scholar 

  • Hütt MT, Lüttge U (2005) Network dynamics in plant biology: current progress in historical perspective. Prog Bot 66: 277–310.

    Article  Google Scholar 

  • Klevecz RR, Ruddle FH (1968) Cyclic changes in enzyme activity in synchronized mammalian cell cultures. Science 159: 634–636.

    Article  PubMed  Google Scholar 

  • Kyriacou CP, Hall JC (1980) Circadian mutations in Drosophilia melanogaster affect short-term fluctuations in the male courtship song. Proc Natl Acad Sci USA 77: 6729–6733.

    Article  PubMed  Google Scholar 

  • Lillo C, Meyer C, Ruoff P (2001) The nitrate reductase circadian system. The central clock dogma contra multiple oscillatory feedback loops. Plant Physiol 125: 1554–1557.

    Article  PubMed  Google Scholar 

  • Lloyd D, Murray DB (2000) Redox cycling of intracellular thiols: state variables for ultradian, circadian cell division cycle and circadian rhythms. In T Van den Driessche et al. (Eds.), The Redox State and Circadian Rhythms. Kluwer, Amsterdam.

    Google Scholar 

  • Lloyd D, Murray DB (2007) Redox rhythmicity: clocks at the core of temporal coherence. Bioessays 29: 465–473.

    Article  PubMed  Google Scholar 

  • Lüttge U (2003) Circardian rhythmicity: is the “biological clock” hardware or software? Prog-Bot 64: 277–319.

    Google Scholar 

  • Lüttge U, Hütt M-T (2004) High frequency or ultradian rhythms in plants. Prog Bot 65: 235–263.

    Google Scholar 

  • Mancuso S, Shabala S (2007) Rhythms in Plants Phenomenology, Mechanisms and Adaptive Significance. Springer, Berlin.

    Google Scholar 

  • Mayevsky A, Chance B (2007) Oxidation-reduction states of NADH in vivo: from animals to clinical use. Mitochondrion 7: 330–339.

    Article  PubMed  Google Scholar 

  • Morré DJ, Orczyk J, Hignite H, Kim C (2007) Regular oscillatory behaviour of aqueous solutions of Cu(11) salts related to effects on equilibrium dynamics of ortho/para hydrogen spin isomers of water. J Inorg Biochem 102: 260–267.

    Article  PubMed  Google Scholar 

  • Murray DB, Lloyd D, Kitano H (2007) Frequency modulation of the yeast reaction network. FEBS J (Suppl 1): D4–D1.

    Google Scholar 

  • Nakajima M, Imai K, Nishiwaki T, Murayama Y, Iwasaki H, Oyama T, Kondo T (2005) Reconstitution of circadian oscillation of cyanobacterial Kai C phosphorylation in vitro. Science 308: 414–415.

    Article  PubMed  Google Scholar 

  • Noble D (2006) The Music of Life. Oxford University Press, Oxford.

    Google Scholar 

  • O’Rourke B, Aon M, Cortassa S (2005) Mitochondrial ion channels: gatekeepers of life and death. Physiol (Bethesda) 20: 303–315.

    Google Scholar 

  • Paranjpe DA, Sharma VK (2005) Evolution of temporal order in living organisms. J Circadian Rhythms 3: 7–12.

    Article  PubMed  Google Scholar 

  • Queiroz-Claret C, Valon C, Queiroz O (1988) Are spontaneous conformational interconversions a molecular basis for long-period oscillations in enzyme activity? Chronobiol Int 5: 301–309.

    Article  PubMed  Google Scholar 

  • Smith MCA, Sumner ER, Avery SV (2007) Glutathione and Gts1p drive beneficial variability in cadmium resistances of individual yeast cells. Mol Microbiol 66: 699–712.

    Article  PubMed  Google Scholar 

  • West BJ (1999) Physiology, Promiscuity and Prophesy of the Millennium. A Tale of Tails. World Scientific, Singapore.

    Google Scholar 

  • Yates FE (1992) Fractal applications in biology: scaling time in biochemical networks. Meth Enzymol 210: 636–676.

    Article  PubMed  Google Scholar 

  • Yates FE (1993) Self-organizing systems. In CAR Boyd and D Noble (Eds.), The Logic of Life. Oxford University Press, Oxford, pp. 189–218.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Lloyd, D., Rossi, E.L. (2008). Epilogue: A New Vision of Life. In: Lloyd, D., Rossi, E.L. (eds) Ultradian Rhythms from Molecules to Mind. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8352-5_18

Download citation

Publish with us

Policies and ethics